diff options
author | cyfraeviolae <cyfraeviolae> | 2022-08-24 00:38:04 -0400 |
---|---|---|
committer | cyfraeviolae <cyfraeviolae> | 2022-08-24 00:38:04 -0400 |
commit | d4e149445bda4a73dc3bb987e6ba296c7d6fe84e (patch) | |
tree | 5edc1b104f45239367a3a380a911de3b97dafa80 /templates/nonce-reuse.html | |
parent | 32137f612509ee577703d4316dc6a2ec937da709 (diff) |
work
Diffstat (limited to 'templates/nonce-reuse.html')
-rw-r--r-- | templates/nonce-reuse.html | 236 |
1 files changed, 236 insertions, 0 deletions
diff --git a/templates/nonce-reuse.html b/templates/nonce-reuse.html new file mode 100644 index 0000000..9761955 --- /dev/null +++ b/templates/nonce-reuse.html @@ -0,0 +1,236 @@ +<!DOCTYPE html> +<html> + <head> + <title>Forbidden Salamanders</title> + <meta charset="utf-8"> + <meta name="viewport" content="width=device-width, initial-scale=1.0"> + <link rel="stylesheet" type="text/css" href="/static/styles.css"> + <link rel="stylesheet" type="text/css" href="/forbidden-salamanders/static/styles.css"> + <link rel="shortcut icon" type="image/x-icon" href="/forbidden-salamanders/static/favicon.ico"> + </head> + <body> + <div class="container"> + <div> + <div class="home"> + <a href="/forbidden-salamanders" class="home-title">Forbidden Salamanders</a> + <span> at </span><a href="/">cyfraeviolae.org</a> + </div> + <div class="crumbs"> + <a href="/git/forbidden-salamanders">source code</a> + <span class="sep"> · </span> + <a href="/forbidden-salamanders/nonce-reuse"><strong>aes-gcm nonce reuse</strong></a> + <span class="sep"> · </span> + <a href="/forbidden-salamanders/nonce-truncation">aes-gcm nonce truncation</a> + <span class="sep"> · </span> + <a href="/forbidden-salamanders/key-commitment">aes-gcm key commitment</a> + </div> + </div> + <p> + <strong>Nonce reuse.</strong> Due to rising entropy + prices, Roseacrucis has started to reuse nonces. You must perform the + Forbidden Attack in order to recover the authentication key and + forge arbitrary ciphertext. + </p> + <br> + <details> + <summary> + Attack outline. + </summary> + <p> + Recall that the AES-GCM ciphertext is computed as the XOR of the + keystream and the message. One can modify the bits of the + ciphertext arbitrarily to effect the same change in the decrypted + plaintext. + </p> + <p> + Where certain bits of the plaintext are already known, the attacker + can fully determine the same bits of the forged plaintext. If + nonces are reused, the keystream will be identical, allowing us to + recover plaintext via + <a href="https://samwho.dev/blog/toying-with-cryptography-crib-dragging/"> + crib dragging</a>, which makes this attack particularly effective: + \[ + c' = c \oplus m \oplus m'. + \] + </p> + <p> + However, we still need to compute a new MAC over the forged ciphertext. + Simplifying for a ciphertext \(c\) of two blocks, the GMAC MAC is computed as + \[ + mac = s + (len)h + c_1h^2 + c_0h^3, + \] + where \(s\) is a constant depending on the AES-GCM key and the nonce, and \(h\) + is the authentication key depending only on the AES-GCM key. + </p> + <p> + If we intercept a second ciphertext \(c'\) encrypted under the same key and nonce, + we can compute + \[ + mac + mac' = (s + s') + (len + len')h + (c_1 + c'_1)h^2 + (c_0+c'_0)h^3, + \] + Since \(s = s'\) and \(x+x=0\) in \(\mathbb{F}_{2^{128}}\), we are + left with the polynomial equation + \[ + 0 = (mac + mac') + (len + len')h + (c_1 + c'_1)h^2 + (c_0+c'_0)h^3 + \] + where all variables are known other than \(h\). Thus, recovering \(h\) + is a matter of finding the roots by <a href="https://en.wikipedia.org/wiki/Factorization_of_polynomials_over_finite_fields">factoring the + polynomial</a>. + </p> + <p> + We plug \(h\) back into the first equation to recover \(s\), + and finally, we can forge the MAC for arbitary ciphertext under the + same nonce. Note that there may be multiple possible monomial roots; + in this case, one can check each possibility online. + </p> + </details> + <br> + <form action="/forbidden-salamanders/nonce-reuse" method="post"> + <div> + <label for="key">Key (16 bytes in hex)</label> + <input name="key" id="key" type="text" value="{{ key.hex() if key else '59454c4c4f575f5355424d4152494e45' }}" minlength=32 maxlength=32> + </div> + + <div> + <label for="nonce">Nonce (12 bytes in hex)</label> + <input name="nonce" id="nonce" type="text" value="{{ nonce.hex() if nonce else '4a4f5247454c424f52474553' }}" minlength=24 maxlength=24> + </div> + + <div> + <label for="m1">First intercepted message (in ASCII)</label> + <input name="m1" id="m1" type="text" required maxlength=100 value="{{m1}}"> + </div> + + <div> + <label for="m2">Second intercepted message (in ASCII)</label> + <input name="m2" id="m2" type="text" required maxlength=100 value="{{m2}}"> + </div> + + <div> + <label for="mf">Forged message; shorter than the first message (in ASCII)</label> + <input name="mf" id="mf" type="text" required maxlength=100 value="{{mf}}"> + </div> + + <div> + <button type="submit">Recover authentication key and forge MAC</button> + </div> + </form> + {% if macs %} + <div> + <p> + Forged ciphertext: <code>{{ c_forged.hex() }}</code> + </p> + Forged MAC candidates: + <ul> + {% for h, _, mac in macs %} + <li> + MAC: <code>{{mac.hex()}}</code> + <ul> + <li>Authentication key: <code>{{h.hex()}}</code></li> + </ul> + </li> + {% endfor %} + </ul> + <form action="/forbidden-salamanders/nonce-reuse" method="get"> + <div> + <button type="submit">Reset</button> + </div> + </form> + </div> + {% endif %} + <br> + <details> + <summary> + Show me the code. + </summary> + <pre> +from <a href="/git/forbidden-salamanders">aesgcmanalysis</a> import xor, gmac, gcm_encrypt, gcm_decrypt, nonce_reuse_recover_secrets + +k = b"tlonorbistertius" +nonce = b"jorgelborges" +m1 = b"The universe (which others call the Library)" +aad1 = b"The Anatomy of Melancholy" +m2 = b"From any of the hexagons one can see, interminably" +aad2 = b"Letizia Alvarez de Toledo" + +c1, mac1 = gcm_encrypt(k, nonce, aad1, m1) +c2, mac2 = gcm_encrypt(k, nonce, aad2, m2) + +# Recover the authentication key and blind from public information +possible_secrets = nonce_reuse_recover_secrets(nonce, aad1, aad2, c1, c2, mac1, mac2) + +# Forge the ciphertext +m_forged = b"As was natural, this inordinate hope" +assert len(m_forged) <= len(m1) +c_forged = xor(c1, xor(m1, m_forged)) +aad_forged = b"You who read me, are You sure of understanding my language?" + +# Check possible candidates for authentication key +succeeded = False +for h, s in possible_secrets: + mac_forged = gmac(h, s, aad_forged, c_forged) + try: + assert gcm_decrypt(k, nonce, aad_forged, c_forged, mac_forged) == m_forged + succeeded = True + print(c_forged.hex(), mac_forged.hex()) + except AssertionError: + pass +assert succeeded</pre></details> + <details> + <summary> + Show me the math. + </summary> + <p> + Once the polynomial difference is computed, one can use SageMath + to compute the factors: + </p> + <pre> +K = GF(2**128, name='x', modulus=x^128+x^7+x^2+x+1) +x = K.gen() +S = PolynomialRing(K, 'y') +y = S.gen() +p = (x^127 + x^125 + x^121 + x^118 + x^117 + x^116 + x^113 + x^111 + x^108 + x^105 + x^102 + x^99 + x^97 + x^95 + x^89 + x^87 + + x^85 + x^84 + x^81 + x^78 + x^73 + x^71 + x^69 + x^67 + x^65 + x^63 + x^62 + x^59 + x^57 + x^55 + x^54 + x^53 + x^52 + x^51 + +x^49 + x^47 + x^46 + x^45 + x^43 + x^41 + x^39 + x^38 + x^37 + x^36 + x^33 + x^29 + x^28 + x^25 + x^21 + x^20 + x^17 + x^15 + x +^13 + x^9 + x^7 + x^4 + x^3 + x)*y^5 + (x^127 + x^125 + x^121 + x^118 + x^117 + x^116 + x^113 + x^111 + x^108 + x^105 + x^102 + + x^99 + x^97 + x^95 + x^89 + x^87 + x^85 + x^84 + x^81 + x^78 + x^73 + x^71 + x^69 + x^67 + x^65 + x^63 + x^62 + x^59 + x^57 + +x^55 + x^54 + x^53 + x^52 + x^51 + x^49 + x^47 + x^46 + x^45 + x^43 + x^41 + x^39 + x^38 + x^37 + x^36 + x^33 + x^29 + x^28 + x +^25 + x^21 + x^20 + x^17 + x^15 + x^13 + x^9 + x^7 + x^4 + x^3 + x)*y^4 + (x^127 + x^125 + x^124 + x^123 + x^122 + x^120 + x^11 +9 + x^118 + x^115 + x^112 + x^111 + x^110 + x^109 + x^108 + x^106 + x^101 + x^100 + x^99 + x^98 + x^96 + x^93 + x^88 + x^87 + x +^84 + x^83 + x^82 + x^78 + x^77 + x^74 + x^71 + x^70 + x^69 + x^68 + x^65 + x^62 + x^61 + x^60 + x^57 + x^55 + x^53 + x^50 + x^ +49 + x^47 + x^46 + x^44 + x^43 + x^41 + x^40 + x^39 + x^37 + x^36 + x^35 + x^34 + x^33 + x^31 + x^30 + x^25 + x^19 + x^16 + x^1 +4 + x^13 + x^12 + x^11 + x^10 + x^5 + x^2 + x + 1)*y^3 + (x^124 + x^123 + x^121 + x^120 + x^119 + x^118 + x^117 + x^116 + x^115 + + x^113 + x^112 + x^110 + x^107 + x^106 + x^104 + x^103 + x^101 + x^99 + x^98 + x^95 + x^94 + x^83 + x^82 + x^81 + x^80 + x^79 + + x^77 + x^76 + x^75 + x^73 + x^72 + x^67 + x^64 + x^63 + x^62 + x^61 + x^59 + x^57 + x^56 + x^54 + x^53 + x^51 + x^49 + x^48 ++ x^46 + x^45 + x^44 + x^42 + x^36 + x^35 + x^34 + x^33 + x^31 + x^28 + x^22 + x^21 + x^17 + x^12 + x^11 + x^10 + x^8 + x^5 + x +^4 + 1)*y^2 + (x^120 + x^119 + x^56 + x^55)*y + (x^127 + x^126 + x^125 + x^124 + x^123 + x^118 + x^117 + x^116 + x^115 + x^114 ++ x^113 + x^105 + x^103 + x^98 + x^96 + x^94 + x^91 + x^90 + x^89 + x^87 + x^86 + x^85 + x^83 + x^81 + x^80 + x^78 + x^77 + x^7 +0 + x^66 + x^63 + x^62 + x^59 + x^58 + x^54 + x^53 + x^52 + x^50 + x^47 + x^45 + x^44 + x^42 + x^40 + x^39 + x^37 + x^35 + x^34 + + x^30 + x^29 + x^27 + x^26 + x^25 + x^23 + x^18 + x^16 + x^14 + x^13 + x^12 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 ++ 1) +for factor, _ in p.factor(): + if factor.degree() == 1: + print('Authentication key:', factor - y)</pre> + <p> + However, the library powering this demonstration implements <a href="https://en.wikipedia.org/wiki/Factorization_of_polynomials_over_finite_fields">polynomial factoring over finite fields</a> from scratch, which is an edifying exercise. + </p> + <p> + We present advice for those who wish to implement polynomial factorization as well: + </p> + <ul> + <li>The gcd of two polynomials is unique only up to multiplication by a non-zero constant because “greater” is defined for polynomials in terms of degree. When used in algorithms, gcd refers to the <em>monic</em> gcd, which is unique.</li> + <li>The <a href="https://math.stackexchange.com/a/943626/1084004">inverse Frobenius automorphism</a> (i.e., square root) in \(\mathbb{F}_{2^{128}}\) is given by \(\sqrt{x} = x^{2^{127}})\).</li> + </ul> + </details> +<script> +MathJax = { + tex: { + extensions: ["AMSmath.js", "AMSsymbols.js"] + } +}; +</script> +<script id="MathJax-script" async + src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml.js"> +</script> + </body> +</html> |