From d4e149445bda4a73dc3bb987e6ba296c7d6fe84e Mon Sep 17 00:00:00 2001 From: cyfraeviolae Date: Wed, 24 Aug 2022 00:38:04 -0400 Subject: work --- templates/nonce-reuse.html | 236 +++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 236 insertions(+) create mode 100644 templates/nonce-reuse.html (limited to 'templates/nonce-reuse.html') diff --git a/templates/nonce-reuse.html b/templates/nonce-reuse.html new file mode 100644 index 0000000..9761955 --- /dev/null +++ b/templates/nonce-reuse.html @@ -0,0 +1,236 @@ + + + + Forbidden Salamanders + + + + + + + +
+
+ + +
+

+ Nonce reuse. Due to rising entropy + prices, Roseacrucis has started to reuse nonces. You must perform the + Forbidden Attack in order to recover the authentication key and + forge arbitrary ciphertext. +

+
+
+ + Attack outline. + +

+ Recall that the AES-GCM ciphertext is computed as the XOR of the + keystream and the message. One can modify the bits of the + ciphertext arbitrarily to effect the same change in the decrypted + plaintext. +

+

+ Where certain bits of the plaintext are already known, the attacker + can fully determine the same bits of the forged plaintext. If + nonces are reused, the keystream will be identical, allowing us to + recover plaintext via + + crib dragging, which makes this attack particularly effective: + \[ + c' = c \oplus m \oplus m'. + \] +

+

+ However, we still need to compute a new MAC over the forged ciphertext. + Simplifying for a ciphertext \(c\) of two blocks, the GMAC MAC is computed as + \[ + mac = s + (len)h + c_1h^2 + c_0h^3, + \] + where \(s\) is a constant depending on the AES-GCM key and the nonce, and \(h\) + is the authentication key depending only on the AES-GCM key. +

+

+ If we intercept a second ciphertext \(c'\) encrypted under the same key and nonce, + we can compute + \[ + mac + mac' = (s + s') + (len + len')h + (c_1 + c'_1)h^2 + (c_0+c'_0)h^3, + \] + Since \(s = s'\) and \(x+x=0\) in \(\mathbb{F}_{2^{128}}\), we are + left with the polynomial equation + \[ + 0 = (mac + mac') + (len + len')h + (c_1 + c'_1)h^2 + (c_0+c'_0)h^3 + \] + where all variables are known other than \(h\). Thus, recovering \(h\) + is a matter of finding the roots by factoring the + polynomial. +

+

+ We plug \(h\) back into the first equation to recover \(s\), + and finally, we can forge the MAC for arbitary ciphertext under the + same nonce. Note that there may be multiple possible monomial roots; + in this case, one can check each possibility online. +

+
+
+
+
+ + +
+ +
+ + +
+ +
+ + +
+ +
+ + +
+ +
+ + +
+ +
+ +
+
+ {% if macs %} +
+

+ Forged ciphertext: {{ c_forged.hex() }} +

+ Forged MAC candidates: +
    + {% for h, _, mac in macs %} +
  • + MAC: {{mac.hex()}} +
      +
    • Authentication key: {{h.hex()}}
    • +
    +
  • + {% endfor %} +
+
+
+ +
+
+
+ {% endif %} +
+
+ + Show me the code. + +
+from aesgcmanalysis import xor, gmac, gcm_encrypt, gcm_decrypt, nonce_reuse_recover_secrets
+
+k = b"tlonorbistertius"
+nonce = b"jorgelborges"
+m1 = b"The universe (which others call the Library)"
+aad1 = b"The Anatomy of Melancholy"
+m2 = b"From any of the hexagons one can see, interminably"
+aad2 = b"Letizia Alvarez de Toledo"
+
+c1, mac1 = gcm_encrypt(k, nonce, aad1, m1)
+c2, mac2 = gcm_encrypt(k, nonce, aad2, m2)
+
+# Recover the authentication key and blind from public information
+possible_secrets = nonce_reuse_recover_secrets(nonce, aad1, aad2, c1, c2, mac1, mac2)
+
+# Forge the ciphertext
+m_forged = b"As was natural, this inordinate hope"
+assert len(m_forged) <= len(m1)
+c_forged = xor(c1, xor(m1, m_forged))
+aad_forged = b"You who read me, are You sure of understanding my language?"
+
+# Check possible candidates for authentication key
+succeeded = False
+for h, s in possible_secrets:
+    mac_forged = gmac(h, s, aad_forged, c_forged)
+    try:
+        assert gcm_decrypt(k, nonce, aad_forged, c_forged, mac_forged) == m_forged
+        succeeded = True
+        print(c_forged.hex(), mac_forged.hex())
+    except AssertionError:
+        pass
+assert succeeded
+
+ + Show me the math. + +

+ Once the polynomial difference is computed, one can use SageMath + to compute the factors: +

+
+K = GF(2**128, name='x', modulus=x^128+x^7+x^2+x+1)
+x = K.gen()
+S = PolynomialRing(K, 'y')
+y = S.gen()
+p = (x^127 + x^125 + x^121 + x^118 + x^117 + x^116 + x^113 + x^111 + x^108 + x^105 + x^102 + x^99 + x^97 + x^95 + x^89 + x^87 +
+ x^85 + x^84 + x^81 + x^78 + x^73 + x^71 + x^69 + x^67 + x^65 + x^63 + x^62 + x^59 + x^57 + x^55 + x^54 + x^53 + x^52 + x^51 +
+x^49 + x^47 + x^46 + x^45 + x^43 + x^41 + x^39 + x^38 + x^37 + x^36 + x^33 + x^29 + x^28 + x^25 + x^21 + x^20 + x^17 + x^15 + x
+^13 + x^9 + x^7 + x^4 + x^3 + x)*y^5 + (x^127 + x^125 + x^121 + x^118 + x^117 + x^116 + x^113 + x^111 + x^108 + x^105 + x^102 +
+ x^99 + x^97 + x^95 + x^89 + x^87 + x^85 + x^84 + x^81 + x^78 + x^73 + x^71 + x^69 + x^67 + x^65 + x^63 + x^62 + x^59 + x^57 +
+x^55 + x^54 + x^53 + x^52 + x^51 + x^49 + x^47 + x^46 + x^45 + x^43 + x^41 + x^39 + x^38 + x^37 + x^36 + x^33 + x^29 + x^28 + x
+^25 + x^21 + x^20 + x^17 + x^15 + x^13 + x^9 + x^7 + x^4 + x^3 + x)*y^4 + (x^127 + x^125 + x^124 + x^123 + x^122 + x^120 + x^11
+9 + x^118 + x^115 + x^112 + x^111 + x^110 + x^109 + x^108 + x^106 + x^101 + x^100 + x^99 + x^98 + x^96 + x^93 + x^88 + x^87 + x
+^84 + x^83 + x^82 + x^78 + x^77 + x^74 + x^71 + x^70 + x^69 + x^68 + x^65 + x^62 + x^61 + x^60 + x^57 + x^55 + x^53 + x^50 + x^
+49 + x^47 + x^46 + x^44 + x^43 + x^41 + x^40 + x^39 + x^37 + x^36 + x^35 + x^34 + x^33 + x^31 + x^30 + x^25 + x^19 + x^16 + x^1
+4 + x^13 + x^12 + x^11 + x^10 + x^5 + x^2 + x + 1)*y^3 + (x^124 + x^123 + x^121 + x^120 + x^119 + x^118 + x^117 + x^116 + x^115
+ + x^113 + x^112 + x^110 + x^107 + x^106 + x^104 + x^103 + x^101 + x^99 + x^98 + x^95 + x^94 + x^83 + x^82 + x^81 + x^80 + x^79
+ + x^77 + x^76 + x^75 + x^73 + x^72 + x^67 + x^64 + x^63 + x^62 + x^61 + x^59 + x^57 + x^56 + x^54 + x^53 + x^51 + x^49 + x^48
++ x^46 + x^45 + x^44 + x^42 + x^36 + x^35 + x^34 + x^33 + x^31 + x^28 + x^22 + x^21 + x^17 + x^12 + x^11 + x^10 + x^8 + x^5 + x
+^4 + 1)*y^2 + (x^120 + x^119 + x^56 + x^55)*y + (x^127 + x^126 + x^125 + x^124 + x^123 + x^118 + x^117 + x^116 + x^115 + x^114
++ x^113 + x^105 + x^103 + x^98 + x^96 + x^94 + x^91 + x^90 + x^89 + x^87 + x^86 + x^85 + x^83 + x^81 + x^80 + x^78 + x^77 + x^7
+0 + x^66 + x^63 + x^62 + x^59 + x^58 + x^54 + x^53 + x^52 + x^50 + x^47 + x^45 + x^44 + x^42 + x^40 + x^39 + x^37 + x^35 + x^34
+ + x^30 + x^29 + x^27 + x^26 + x^25 + x^23 + x^18 + x^16 + x^14 + x^13 + x^12 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3
++ 1)
+for factor, _ in p.factor():
+    if factor.degree() == 1:
+        print('Authentication key:', factor - y)
+

+ However, the library powering this demonstration implements polynomial factoring over finite fields from scratch, which is an edifying exercise. +

+

+ We present advice for those who wish to implement polynomial factorization as well: +

+
    +
  • The gcd of two polynomials is unique only up to multiplication by a non-zero constant because “greater” is defined for polynomials in terms of degree. When used in algorithms, gcd refers to the monic gcd, which is unique.
  • +
  • The inverse Frobenius automorphism (i.e., square root) in \(\mathbb{F}_{2^{128}}\) is given by \(\sqrt{x} = x^{2^{127}})\).
  • +
+
+ + + + -- cgit v1.2.3