summaryrefslogtreecommitdiff
path: root/venv/lib/python3.11/site-packages/sqlalchemy/sql/selectable.py
blob: 65978f6646cc2c4314f4246b674c23c47db88457 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
# sql/selectable.py
# Copyright (C) 2005-2024 the SQLAlchemy authors and contributors
# <see AUTHORS file>
#
# This module is part of SQLAlchemy and is released under
# the MIT License: https://www.opensource.org/licenses/mit-license.php

"""The :class:`_expression.FromClause` class of SQL expression elements,
representing
SQL tables and derived rowsets.

"""

from __future__ import annotations

import collections
from enum import Enum
import itertools
from typing import AbstractSet
from typing import Any as TODO_Any
from typing import Any
from typing import Callable
from typing import cast
from typing import Dict
from typing import Generic
from typing import Iterable
from typing import Iterator
from typing import List
from typing import NamedTuple
from typing import NoReturn
from typing import Optional
from typing import overload
from typing import Sequence
from typing import Set
from typing import Tuple
from typing import Type
from typing import TYPE_CHECKING
from typing import TypeVar
from typing import Union

from . import cache_key
from . import coercions
from . import operators
from . import roles
from . import traversals
from . import type_api
from . import visitors
from ._typing import _ColumnsClauseArgument
from ._typing import _no_kw
from ._typing import _TP
from ._typing import is_column_element
from ._typing import is_select_statement
from ._typing import is_subquery
from ._typing import is_table
from ._typing import is_text_clause
from .annotation import Annotated
from .annotation import SupportsCloneAnnotations
from .base import _clone
from .base import _cloned_difference
from .base import _cloned_intersection
from .base import _entity_namespace_key
from .base import _EntityNamespace
from .base import _expand_cloned
from .base import _from_objects
from .base import _generative
from .base import _never_select_column
from .base import _NoArg
from .base import _select_iterables
from .base import CacheableOptions
from .base import ColumnCollection
from .base import ColumnSet
from .base import CompileState
from .base import DedupeColumnCollection
from .base import Executable
from .base import Generative
from .base import HasCompileState
from .base import HasMemoized
from .base import Immutable
from .coercions import _document_text_coercion
from .elements import _anonymous_label
from .elements import BindParameter
from .elements import BooleanClauseList
from .elements import ClauseElement
from .elements import ClauseList
from .elements import ColumnClause
from .elements import ColumnElement
from .elements import DQLDMLClauseElement
from .elements import GroupedElement
from .elements import literal_column
from .elements import TableValuedColumn
from .elements import UnaryExpression
from .operators import OperatorType
from .sqltypes import NULLTYPE
from .visitors import _TraverseInternalsType
from .visitors import InternalTraversal
from .visitors import prefix_anon_map
from .. import exc
from .. import util
from ..util import HasMemoized_ro_memoized_attribute
from ..util.typing import Literal
from ..util.typing import Protocol
from ..util.typing import Self

and_ = BooleanClauseList.and_

_T = TypeVar("_T", bound=Any)

if TYPE_CHECKING:
    from ._typing import _ColumnExpressionArgument
    from ._typing import _ColumnExpressionOrStrLabelArgument
    from ._typing import _FromClauseArgument
    from ._typing import _JoinTargetArgument
    from ._typing import _LimitOffsetType
    from ._typing import _MAYBE_ENTITY
    from ._typing import _NOT_ENTITY
    from ._typing import _OnClauseArgument
    from ._typing import _SelectStatementForCompoundArgument
    from ._typing import _T0
    from ._typing import _T1
    from ._typing import _T2
    from ._typing import _T3
    from ._typing import _T4
    from ._typing import _T5
    from ._typing import _T6
    from ._typing import _T7
    from ._typing import _TextCoercedExpressionArgument
    from ._typing import _TypedColumnClauseArgument as _TCCA
    from ._typing import _TypeEngineArgument
    from .base import _AmbiguousTableNameMap
    from .base import ExecutableOption
    from .base import ReadOnlyColumnCollection
    from .cache_key import _CacheKeyTraversalType
    from .compiler import SQLCompiler
    from .dml import Delete
    from .dml import Update
    from .elements import BinaryExpression
    from .elements import KeyedColumnElement
    from .elements import Label
    from .elements import NamedColumn
    from .elements import TextClause
    from .functions import Function
    from .schema import ForeignKey
    from .schema import ForeignKeyConstraint
    from .sqltypes import TableValueType
    from .type_api import TypeEngine
    from .visitors import _CloneCallableType


_ColumnsClauseElement = Union["FromClause", ColumnElement[Any], "TextClause"]
_LabelConventionCallable = Callable[
    [Union["ColumnElement[Any]", "TextClause"]], Optional[str]
]


class _JoinTargetProtocol(Protocol):
    @util.ro_non_memoized_property
    def _from_objects(self) -> List[FromClause]: ...

    @util.ro_non_memoized_property
    def entity_namespace(self) -> _EntityNamespace: ...


_JoinTargetElement = Union["FromClause", _JoinTargetProtocol]
_OnClauseElement = Union["ColumnElement[bool]", _JoinTargetProtocol]

_ForUpdateOfArgument = Union[
    # single column, Table, ORM Entity
    Union[
        "_ColumnExpressionArgument[Any]",
        "_FromClauseArgument",
    ],
    # or sequence of single column elements
    Sequence["_ColumnExpressionArgument[Any]"],
]


_SetupJoinsElement = Tuple[
    _JoinTargetElement,
    Optional[_OnClauseElement],
    Optional["FromClause"],
    Dict[str, Any],
]


_SelectIterable = Iterable[Union["ColumnElement[Any]", "TextClause"]]


class _OffsetLimitParam(BindParameter[int]):
    inherit_cache = True

    @property
    def _limit_offset_value(self) -> Optional[int]:
        return self.effective_value


class ReturnsRows(roles.ReturnsRowsRole, DQLDMLClauseElement):
    """The base-most class for Core constructs that have some concept of
    columns that can represent rows.

    While the SELECT statement and TABLE are the primary things we think
    of in this category,  DML like INSERT, UPDATE and DELETE can also specify
    RETURNING which means they can be used in CTEs and other forms, and
    PostgreSQL has functions that return rows also.

    .. versionadded:: 1.4

    """

    _is_returns_rows = True

    # sub-elements of returns_rows
    _is_from_clause = False
    _is_select_base = False
    _is_select_statement = False
    _is_lateral = False

    @property
    def selectable(self) -> ReturnsRows:
        return self

    @util.ro_non_memoized_property
    def _all_selected_columns(self) -> _SelectIterable:
        """A sequence of column expression objects that represents the
        "selected" columns of this :class:`_expression.ReturnsRows`.

        This is typically equivalent to .exported_columns except it is
        delivered in the form of a straight sequence and not  keyed
        :class:`_expression.ColumnCollection`.

        """
        raise NotImplementedError()

    def is_derived_from(self, fromclause: Optional[FromClause]) -> bool:
        """Return ``True`` if this :class:`.ReturnsRows` is
        'derived' from the given :class:`.FromClause`.

        An example would be an Alias of a Table is derived from that Table.

        """
        raise NotImplementedError()

    def _generate_fromclause_column_proxies(
        self, fromclause: FromClause
    ) -> None:
        """Populate columns into an :class:`.AliasedReturnsRows` object."""

        raise NotImplementedError()

    def _refresh_for_new_column(self, column: ColumnElement[Any]) -> None:
        """reset internal collections for an incoming column being added."""
        raise NotImplementedError()

    @property
    def exported_columns(self) -> ReadOnlyColumnCollection[Any, Any]:
        """A :class:`_expression.ColumnCollection`
        that represents the "exported"
        columns of this :class:`_expression.ReturnsRows`.

        The "exported" columns represent the collection of
        :class:`_expression.ColumnElement`
        expressions that are rendered by this SQL
        construct.   There are primary varieties which are the
        "FROM clause columns" of a FROM clause, such as a table, join,
        or subquery, the "SELECTed columns", which are the columns in
        the "columns clause" of a SELECT statement, and the RETURNING
        columns in a DML statement..

        .. versionadded:: 1.4

        .. seealso::

            :attr:`_expression.FromClause.exported_columns`

            :attr:`_expression.SelectBase.exported_columns`
        """

        raise NotImplementedError()


class ExecutableReturnsRows(Executable, ReturnsRows):
    """base for executable statements that return rows."""


class TypedReturnsRows(ExecutableReturnsRows, Generic[_TP]):
    """base for executable statements that return rows."""


class Selectable(ReturnsRows):
    """Mark a class as being selectable."""

    __visit_name__ = "selectable"

    is_selectable = True

    def _refresh_for_new_column(self, column: ColumnElement[Any]) -> None:
        raise NotImplementedError()

    def lateral(self, name: Optional[str] = None) -> LateralFromClause:
        """Return a LATERAL alias of this :class:`_expression.Selectable`.

        The return value is the :class:`_expression.Lateral` construct also
        provided by the top-level :func:`_expression.lateral` function.

        .. seealso::

            :ref:`tutorial_lateral_correlation` -  overview of usage.

        """
        return Lateral._construct(self, name=name)

    @util.deprecated(
        "1.4",
        message="The :meth:`.Selectable.replace_selectable` method is "
        "deprecated, and will be removed in a future release.  Similar "
        "functionality is available via the sqlalchemy.sql.visitors module.",
    )
    @util.preload_module("sqlalchemy.sql.util")
    def replace_selectable(self, old: FromClause, alias: Alias) -> Self:
        """Replace all occurrences of :class:`_expression.FromClause`
        'old' with the given :class:`_expression.Alias`
        object, returning a copy of this :class:`_expression.FromClause`.

        """
        return util.preloaded.sql_util.ClauseAdapter(alias).traverse(self)

    def corresponding_column(
        self, column: KeyedColumnElement[Any], require_embedded: bool = False
    ) -> Optional[KeyedColumnElement[Any]]:
        """Given a :class:`_expression.ColumnElement`, return the exported
        :class:`_expression.ColumnElement` object from the
        :attr:`_expression.Selectable.exported_columns`
        collection of this :class:`_expression.Selectable`
        which corresponds to that
        original :class:`_expression.ColumnElement` via a common ancestor
        column.

        :param column: the target :class:`_expression.ColumnElement`
                      to be matched.

        :param require_embedded: only return corresponding columns for
         the given :class:`_expression.ColumnElement`, if the given
         :class:`_expression.ColumnElement`
         is actually present within a sub-element
         of this :class:`_expression.Selectable`.
         Normally the column will match if
         it merely shares a common ancestor with one of the exported
         columns of this :class:`_expression.Selectable`.

        .. seealso::

            :attr:`_expression.Selectable.exported_columns` - the
            :class:`_expression.ColumnCollection`
            that is used for the operation.

            :meth:`_expression.ColumnCollection.corresponding_column`
            - implementation
            method.

        """

        return self.exported_columns.corresponding_column(
            column, require_embedded
        )


class HasPrefixes:
    _prefixes: Tuple[Tuple[DQLDMLClauseElement, str], ...] = ()

    _has_prefixes_traverse_internals: _TraverseInternalsType = [
        ("_prefixes", InternalTraversal.dp_prefix_sequence)
    ]

    @_generative
    @_document_text_coercion(
        "prefixes",
        ":meth:`_expression.HasPrefixes.prefix_with`",
        ":paramref:`.HasPrefixes.prefix_with.*prefixes`",
    )
    def prefix_with(
        self,
        *prefixes: _TextCoercedExpressionArgument[Any],
        dialect: str = "*",
    ) -> Self:
        r"""Add one or more expressions following the statement keyword, i.e.
        SELECT, INSERT, UPDATE, or DELETE. Generative.

        This is used to support backend-specific prefix keywords such as those
        provided by MySQL.

        E.g.::

            stmt = table.insert().prefix_with("LOW_PRIORITY", dialect="mysql")

            # MySQL 5.7 optimizer hints
            stmt = select(table).prefix_with(
                "/*+ BKA(t1) */", dialect="mysql")

        Multiple prefixes can be specified by multiple calls
        to :meth:`_expression.HasPrefixes.prefix_with`.

        :param \*prefixes: textual or :class:`_expression.ClauseElement`
         construct which
         will be rendered following the INSERT, UPDATE, or DELETE
         keyword.
        :param dialect: optional string dialect name which will
         limit rendering of this prefix to only that dialect.

        """
        self._prefixes = self._prefixes + tuple(
            [
                (coercions.expect(roles.StatementOptionRole, p), dialect)
                for p in prefixes
            ]
        )
        return self


class HasSuffixes:
    _suffixes: Tuple[Tuple[DQLDMLClauseElement, str], ...] = ()

    _has_suffixes_traverse_internals: _TraverseInternalsType = [
        ("_suffixes", InternalTraversal.dp_prefix_sequence)
    ]

    @_generative
    @_document_text_coercion(
        "suffixes",
        ":meth:`_expression.HasSuffixes.suffix_with`",
        ":paramref:`.HasSuffixes.suffix_with.*suffixes`",
    )
    def suffix_with(
        self,
        *suffixes: _TextCoercedExpressionArgument[Any],
        dialect: str = "*",
    ) -> Self:
        r"""Add one or more expressions following the statement as a whole.

        This is used to support backend-specific suffix keywords on
        certain constructs.

        E.g.::

            stmt = select(col1, col2).cte().suffix_with(
                "cycle empno set y_cycle to 1 default 0", dialect="oracle")

        Multiple suffixes can be specified by multiple calls
        to :meth:`_expression.HasSuffixes.suffix_with`.

        :param \*suffixes: textual or :class:`_expression.ClauseElement`
         construct which
         will be rendered following the target clause.
        :param dialect: Optional string dialect name which will
         limit rendering of this suffix to only that dialect.

        """
        self._suffixes = self._suffixes + tuple(
            [
                (coercions.expect(roles.StatementOptionRole, p), dialect)
                for p in suffixes
            ]
        )
        return self


class HasHints:
    _hints: util.immutabledict[Tuple[FromClause, str], str] = (
        util.immutabledict()
    )
    _statement_hints: Tuple[Tuple[str, str], ...] = ()

    _has_hints_traverse_internals: _TraverseInternalsType = [
        ("_statement_hints", InternalTraversal.dp_statement_hint_list),
        ("_hints", InternalTraversal.dp_table_hint_list),
    ]

    def with_statement_hint(self, text: str, dialect_name: str = "*") -> Self:
        """Add a statement hint to this :class:`_expression.Select` or
        other selectable object.

        This method is similar to :meth:`_expression.Select.with_hint`
        except that
        it does not require an individual table, and instead applies to the
        statement as a whole.

        Hints here are specific to the backend database and may include
        directives such as isolation levels, file directives, fetch directives,
        etc.

        .. seealso::

            :meth:`_expression.Select.with_hint`

            :meth:`_expression.Select.prefix_with` - generic SELECT prefixing
            which also can suit some database-specific HINT syntaxes such as
            MySQL optimizer hints

        """
        return self._with_hint(None, text, dialect_name)

    @_generative
    def with_hint(
        self,
        selectable: _FromClauseArgument,
        text: str,
        dialect_name: str = "*",
    ) -> Self:
        r"""Add an indexing or other executional context hint for the given
        selectable to this :class:`_expression.Select` or other selectable
        object.

        The text of the hint is rendered in the appropriate
        location for the database backend in use, relative
        to the given :class:`_schema.Table` or :class:`_expression.Alias`
        passed as the
        ``selectable`` argument. The dialect implementation
        typically uses Python string substitution syntax
        with the token ``%(name)s`` to render the name of
        the table or alias. E.g. when using Oracle, the
        following::

            select(mytable).\
                with_hint(mytable, "index(%(name)s ix_mytable)")

        Would render SQL as::

            select /*+ index(mytable ix_mytable) */ ... from mytable

        The ``dialect_name`` option will limit the rendering of a particular
        hint to a particular backend. Such as, to add hints for both Oracle
        and Sybase simultaneously::

            select(mytable).\
                with_hint(mytable, "index(%(name)s ix_mytable)", 'oracle').\
                with_hint(mytable, "WITH INDEX ix_mytable", 'mssql')

        .. seealso::

            :meth:`_expression.Select.with_statement_hint`

        """

        return self._with_hint(selectable, text, dialect_name)

    def _with_hint(
        self,
        selectable: Optional[_FromClauseArgument],
        text: str,
        dialect_name: str,
    ) -> Self:
        if selectable is None:
            self._statement_hints += ((dialect_name, text),)
        else:
            self._hints = self._hints.union(
                {
                    (
                        coercions.expect(roles.FromClauseRole, selectable),
                        dialect_name,
                    ): text
                }
            )
        return self


class FromClause(roles.AnonymizedFromClauseRole, Selectable):
    """Represent an element that can be used within the ``FROM``
    clause of a ``SELECT`` statement.

    The most common forms of :class:`_expression.FromClause` are the
    :class:`_schema.Table` and the :func:`_expression.select` constructs.  Key
    features common to all :class:`_expression.FromClause` objects include:

    * a :attr:`.c` collection, which provides per-name access to a collection
      of :class:`_expression.ColumnElement` objects.
    * a :attr:`.primary_key` attribute, which is a collection of all those
      :class:`_expression.ColumnElement`
      objects that indicate the ``primary_key`` flag.
    * Methods to generate various derivations of a "from" clause, including
      :meth:`_expression.FromClause.alias`,
      :meth:`_expression.FromClause.join`,
      :meth:`_expression.FromClause.select`.


    """

    __visit_name__ = "fromclause"
    named_with_column = False

    @util.ro_non_memoized_property
    def _hide_froms(self) -> Iterable[FromClause]:
        return ()

    _is_clone_of: Optional[FromClause]

    _columns: ColumnCollection[Any, Any]

    schema: Optional[str] = None
    """Define the 'schema' attribute for this :class:`_expression.FromClause`.

    This is typically ``None`` for most objects except that of
    :class:`_schema.Table`, where it is taken as the value of the
    :paramref:`_schema.Table.schema` argument.

    """

    is_selectable = True
    _is_from_clause = True
    _is_join = False

    _use_schema_map = False

    def select(self) -> Select[Any]:
        r"""Return a SELECT of this :class:`_expression.FromClause`.


        e.g.::

            stmt = some_table.select().where(some_table.c.id == 5)

        .. seealso::

            :func:`_expression.select` - general purpose
            method which allows for arbitrary column lists.

        """
        return Select(self)

    def join(
        self,
        right: _FromClauseArgument,
        onclause: Optional[_ColumnExpressionArgument[bool]] = None,
        isouter: bool = False,
        full: bool = False,
    ) -> Join:
        """Return a :class:`_expression.Join` from this
        :class:`_expression.FromClause`
        to another :class:`FromClause`.

        E.g.::

            from sqlalchemy import join

            j = user_table.join(address_table,
                            user_table.c.id == address_table.c.user_id)
            stmt = select(user_table).select_from(j)

        would emit SQL along the lines of::

            SELECT user.id, user.name FROM user
            JOIN address ON user.id = address.user_id

        :param right: the right side of the join; this is any
         :class:`_expression.FromClause` object such as a
         :class:`_schema.Table` object, and
         may also be a selectable-compatible object such as an ORM-mapped
         class.

        :param onclause: a SQL expression representing the ON clause of the
         join.  If left at ``None``, :meth:`_expression.FromClause.join`
         will attempt to
         join the two tables based on a foreign key relationship.

        :param isouter: if True, render a LEFT OUTER JOIN, instead of JOIN.

        :param full: if True, render a FULL OUTER JOIN, instead of LEFT OUTER
         JOIN.  Implies :paramref:`.FromClause.join.isouter`.

        .. seealso::

            :func:`_expression.join` - standalone function

            :class:`_expression.Join` - the type of object produced

        """

        return Join(self, right, onclause, isouter, full)

    def outerjoin(
        self,
        right: _FromClauseArgument,
        onclause: Optional[_ColumnExpressionArgument[bool]] = None,
        full: bool = False,
    ) -> Join:
        """Return a :class:`_expression.Join` from this
        :class:`_expression.FromClause`
        to another :class:`FromClause`, with the "isouter" flag set to
        True.

        E.g.::

            from sqlalchemy import outerjoin

            j = user_table.outerjoin(address_table,
                            user_table.c.id == address_table.c.user_id)

        The above is equivalent to::

            j = user_table.join(
                address_table,
                user_table.c.id == address_table.c.user_id,
                isouter=True)

        :param right: the right side of the join; this is any
         :class:`_expression.FromClause` object such as a
         :class:`_schema.Table` object, and
         may also be a selectable-compatible object such as an ORM-mapped
         class.

        :param onclause: a SQL expression representing the ON clause of the
         join.  If left at ``None``, :meth:`_expression.FromClause.join`
         will attempt to
         join the two tables based on a foreign key relationship.

        :param full: if True, render a FULL OUTER JOIN, instead of
         LEFT OUTER JOIN.

        .. seealso::

            :meth:`_expression.FromClause.join`

            :class:`_expression.Join`

        """

        return Join(self, right, onclause, True, full)

    def alias(
        self, name: Optional[str] = None, flat: bool = False
    ) -> NamedFromClause:
        """Return an alias of this :class:`_expression.FromClause`.

        E.g.::

            a2 = some_table.alias('a2')

        The above code creates an :class:`_expression.Alias`
        object which can be used
        as a FROM clause in any SELECT statement.

        .. seealso::

            :ref:`tutorial_using_aliases`

            :func:`_expression.alias`

        """

        return Alias._construct(self, name=name)

    def tablesample(
        self,
        sampling: Union[float, Function[Any]],
        name: Optional[str] = None,
        seed: Optional[roles.ExpressionElementRole[Any]] = None,
    ) -> TableSample:
        """Return a TABLESAMPLE alias of this :class:`_expression.FromClause`.

        The return value is the :class:`_expression.TableSample`
        construct also
        provided by the top-level :func:`_expression.tablesample` function.

        .. seealso::

            :func:`_expression.tablesample` - usage guidelines and parameters

        """
        return TableSample._construct(
            self, sampling=sampling, name=name, seed=seed
        )

    def is_derived_from(self, fromclause: Optional[FromClause]) -> bool:
        """Return ``True`` if this :class:`_expression.FromClause` is
        'derived' from the given ``FromClause``.

        An example would be an Alias of a Table is derived from that Table.

        """
        # this is essentially an "identity" check in the base class.
        # Other constructs override this to traverse through
        # contained elements.
        return fromclause in self._cloned_set

    def _is_lexical_equivalent(self, other: FromClause) -> bool:
        """Return ``True`` if this :class:`_expression.FromClause` and
        the other represent the same lexical identity.

        This tests if either one is a copy of the other, or
        if they are the same via annotation identity.

        """
        return bool(self._cloned_set.intersection(other._cloned_set))

    @util.ro_non_memoized_property
    def description(self) -> str:
        """A brief description of this :class:`_expression.FromClause`.

        Used primarily for error message formatting.

        """
        return getattr(self, "name", self.__class__.__name__ + " object")

    def _generate_fromclause_column_proxies(
        self, fromclause: FromClause
    ) -> None:
        fromclause._columns._populate_separate_keys(
            col._make_proxy(fromclause) for col in self.c
        )

    @util.ro_non_memoized_property
    def exported_columns(
        self,
    ) -> ReadOnlyColumnCollection[str, KeyedColumnElement[Any]]:
        """A :class:`_expression.ColumnCollection`
        that represents the "exported"
        columns of this :class:`_expression.Selectable`.

        The "exported" columns for a :class:`_expression.FromClause`
        object are synonymous
        with the :attr:`_expression.FromClause.columns` collection.

        .. versionadded:: 1.4

        .. seealso::

            :attr:`_expression.Selectable.exported_columns`

            :attr:`_expression.SelectBase.exported_columns`


        """
        return self.c

    @util.ro_non_memoized_property
    def columns(
        self,
    ) -> ReadOnlyColumnCollection[str, KeyedColumnElement[Any]]:
        """A named-based collection of :class:`_expression.ColumnElement`
        objects maintained by this :class:`_expression.FromClause`.

        The :attr:`.columns`, or :attr:`.c` collection, is the gateway
        to the construction of SQL expressions using table-bound or
        other selectable-bound columns::

            select(mytable).where(mytable.c.somecolumn == 5)

        :return: a :class:`.ColumnCollection` object.

        """
        return self.c

    @util.ro_memoized_property
    def c(self) -> ReadOnlyColumnCollection[str, KeyedColumnElement[Any]]:
        """
        A synonym for :attr:`.FromClause.columns`

        :return: a :class:`.ColumnCollection`

        """
        if "_columns" not in self.__dict__:
            self._init_collections()
            self._populate_column_collection()
        return self._columns.as_readonly()

    @util.ro_non_memoized_property
    def entity_namespace(self) -> _EntityNamespace:
        """Return a namespace used for name-based access in SQL expressions.

        This is the namespace that is used to resolve "filter_by()" type
        expressions, such as::

            stmt.filter_by(address='some address')

        It defaults to the ``.c`` collection, however internally it can
        be overridden using the "entity_namespace" annotation to deliver
        alternative results.

        """
        return self.c

    @util.ro_memoized_property
    def primary_key(self) -> Iterable[NamedColumn[Any]]:
        """Return the iterable collection of :class:`_schema.Column` objects
        which comprise the primary key of this :class:`_selectable.FromClause`.

        For a :class:`_schema.Table` object, this collection is represented
        by the :class:`_schema.PrimaryKeyConstraint` which itself is an
        iterable collection of :class:`_schema.Column` objects.

        """
        self._init_collections()
        self._populate_column_collection()
        return self.primary_key

    @util.ro_memoized_property
    def foreign_keys(self) -> Iterable[ForeignKey]:
        """Return the collection of :class:`_schema.ForeignKey` marker objects
        which this FromClause references.

        Each :class:`_schema.ForeignKey` is a member of a
        :class:`_schema.Table`-wide
        :class:`_schema.ForeignKeyConstraint`.

        .. seealso::

            :attr:`_schema.Table.foreign_key_constraints`

        """
        self._init_collections()
        self._populate_column_collection()
        return self.foreign_keys

    def _reset_column_collection(self) -> None:
        """Reset the attributes linked to the ``FromClause.c`` attribute.

        This collection is separate from all the other memoized things
        as it has shown to be sensitive to being cleared out in situations
        where enclosing code, typically in a replacement traversal scenario,
        has already established strong relationships
        with the exported columns.

        The collection is cleared for the case where a table is having a
        column added to it as well as within a Join during copy internals.

        """

        for key in ["_columns", "columns", "c", "primary_key", "foreign_keys"]:
            self.__dict__.pop(key, None)

    @util.ro_non_memoized_property
    def _select_iterable(self) -> _SelectIterable:
        return (c for c in self.c if not _never_select_column(c))

    def _init_collections(self) -> None:
        assert "_columns" not in self.__dict__
        assert "primary_key" not in self.__dict__
        assert "foreign_keys" not in self.__dict__

        self._columns = ColumnCollection()
        self.primary_key = ColumnSet()  # type: ignore
        self.foreign_keys = set()  # type: ignore

    @property
    def _cols_populated(self) -> bool:
        return "_columns" in self.__dict__

    def _populate_column_collection(self) -> None:
        """Called on subclasses to establish the .c collection.

        Each implementation has a different way of establishing
        this collection.

        """

    def _refresh_for_new_column(self, column: ColumnElement[Any]) -> None:
        """Given a column added to the .c collection of an underlying
        selectable, produce the local version of that column, assuming this
        selectable ultimately should proxy this column.

        this is used to "ping" a derived selectable to add a new column
        to its .c. collection when a Column has been added to one of the
        Table objects it ultimately derives from.

        If the given selectable hasn't populated its .c. collection yet,
        it should at least pass on the message to the contained selectables,
        but it will return None.

        This method is currently used by Declarative to allow Table
        columns to be added to a partially constructed inheritance
        mapping that may have already produced joins.  The method
        isn't public right now, as the full span of implications
        and/or caveats aren't yet clear.

        It's also possible that this functionality could be invoked by
        default via an event, which would require that
        selectables maintain a weak referencing collection of all
        derivations.

        """
        self._reset_column_collection()

    def _anonymous_fromclause(
        self, *, name: Optional[str] = None, flat: bool = False
    ) -> FromClause:
        return self.alias(name=name)

    if TYPE_CHECKING:

        def self_group(
            self, against: Optional[OperatorType] = None
        ) -> Union[FromGrouping, Self]: ...


class NamedFromClause(FromClause):
    """A :class:`.FromClause` that has a name.

    Examples include tables, subqueries, CTEs, aliased tables.

    .. versionadded:: 2.0

    """

    named_with_column = True

    name: str

    @util.preload_module("sqlalchemy.sql.sqltypes")
    def table_valued(self) -> TableValuedColumn[Any]:
        """Return a :class:`_sql.TableValuedColumn` object for this
        :class:`_expression.FromClause`.

        A :class:`_sql.TableValuedColumn` is a :class:`_sql.ColumnElement` that
        represents a complete row in a table. Support for this construct is
        backend dependent, and is supported in various forms by backends
        such as PostgreSQL, Oracle and SQL Server.

        E.g.:

        .. sourcecode:: pycon+sql

            >>> from sqlalchemy import select, column, func, table
            >>> a = table("a", column("id"), column("x"), column("y"))
            >>> stmt = select(func.row_to_json(a.table_valued()))
            >>> print(stmt)
            {printsql}SELECT row_to_json(a) AS row_to_json_1
            FROM a

        .. versionadded:: 1.4.0b2

        .. seealso::

            :ref:`tutorial_functions` - in the :ref:`unified_tutorial`

        """
        return TableValuedColumn(self, type_api.TABLEVALUE)


class SelectLabelStyle(Enum):
    """Label style constants that may be passed to
    :meth:`_sql.Select.set_label_style`."""

    LABEL_STYLE_NONE = 0
    """Label style indicating no automatic labeling should be applied to the
    columns clause of a SELECT statement.

    Below, the columns named ``columna`` are both rendered as is, meaning that
    the name ``columna`` can only refer to the first occurrence of this name
    within a result set, as well as if the statement were used as a subquery:

    .. sourcecode:: pycon+sql

        >>> from sqlalchemy import table, column, select, true, LABEL_STYLE_NONE
        >>> table1 = table("table1", column("columna"), column("columnb"))
        >>> table2 = table("table2", column("columna"), column("columnc"))
        >>> print(select(table1, table2).join(table2, true()).set_label_style(LABEL_STYLE_NONE))
        {printsql}SELECT table1.columna, table1.columnb, table2.columna, table2.columnc
        FROM table1 JOIN table2 ON true

    Used with the :meth:`_sql.Select.set_label_style` method.

    .. versionadded:: 1.4

    """  # noqa: E501

    LABEL_STYLE_TABLENAME_PLUS_COL = 1
    """Label style indicating all columns should be labeled as
    ``<tablename>_<columnname>`` when generating the columns clause of a SELECT
    statement, to disambiguate same-named columns referenced from different
    tables, aliases, or subqueries.

    Below, all column names are given a label so that the two same-named
    columns ``columna`` are disambiguated as ``table1_columna`` and
    ``table2_columna``:

    .. sourcecode:: pycon+sql

        >>> from sqlalchemy import table, column, select, true, LABEL_STYLE_TABLENAME_PLUS_COL
        >>> table1 = table("table1", column("columna"), column("columnb"))
        >>> table2 = table("table2", column("columna"), column("columnc"))
        >>> print(select(table1, table2).join(table2, true()).set_label_style(LABEL_STYLE_TABLENAME_PLUS_COL))
        {printsql}SELECT table1.columna AS table1_columna, table1.columnb AS table1_columnb, table2.columna AS table2_columna, table2.columnc AS table2_columnc
        FROM table1 JOIN table2 ON true

    Used with the :meth:`_sql.GenerativeSelect.set_label_style` method.
    Equivalent to the legacy method ``Select.apply_labels()``;
    :data:`_sql.LABEL_STYLE_TABLENAME_PLUS_COL` is SQLAlchemy's legacy
    auto-labeling style. :data:`_sql.LABEL_STYLE_DISAMBIGUATE_ONLY` provides a
    less intrusive approach to disambiguation of same-named column expressions.


    .. versionadded:: 1.4

    """  # noqa: E501

    LABEL_STYLE_DISAMBIGUATE_ONLY = 2
    """Label style indicating that columns with a name that conflicts with
    an existing name should be labeled with a semi-anonymizing label
    when generating the columns clause of a SELECT statement.

    Below, most column names are left unaffected, except for the second
    occurrence of the name ``columna``, which is labeled using the
    label ``columna_1`` to disambiguate it from that of ``tablea.columna``:

    .. sourcecode:: pycon+sql

        >>> from sqlalchemy import table, column, select, true, LABEL_STYLE_DISAMBIGUATE_ONLY
        >>> table1 = table("table1", column("columna"), column("columnb"))
        >>> table2 = table("table2", column("columna"), column("columnc"))
        >>> print(select(table1, table2).join(table2, true()).set_label_style(LABEL_STYLE_DISAMBIGUATE_ONLY))
        {printsql}SELECT table1.columna, table1.columnb, table2.columna AS columna_1, table2.columnc
        FROM table1 JOIN table2 ON true

    Used with the :meth:`_sql.GenerativeSelect.set_label_style` method,
    :data:`_sql.LABEL_STYLE_DISAMBIGUATE_ONLY` is the default labeling style
    for all SELECT statements outside of :term:`1.x style` ORM queries.

    .. versionadded:: 1.4

    """  # noqa: E501

    LABEL_STYLE_DEFAULT = LABEL_STYLE_DISAMBIGUATE_ONLY
    """The default label style, refers to
    :data:`_sql.LABEL_STYLE_DISAMBIGUATE_ONLY`.

    .. versionadded:: 1.4

    """

    LABEL_STYLE_LEGACY_ORM = 3


(
    LABEL_STYLE_NONE,
    LABEL_STYLE_TABLENAME_PLUS_COL,
    LABEL_STYLE_DISAMBIGUATE_ONLY,
    _,
) = list(SelectLabelStyle)

LABEL_STYLE_DEFAULT = LABEL_STYLE_DISAMBIGUATE_ONLY


class Join(roles.DMLTableRole, FromClause):
    """Represent a ``JOIN`` construct between two
    :class:`_expression.FromClause`
    elements.

    The public constructor function for :class:`_expression.Join`
    is the module-level
    :func:`_expression.join()` function, as well as the
    :meth:`_expression.FromClause.join` method
    of any :class:`_expression.FromClause` (e.g. such as
    :class:`_schema.Table`).

    .. seealso::

        :func:`_expression.join`

        :meth:`_expression.FromClause.join`

    """

    __visit_name__ = "join"

    _traverse_internals: _TraverseInternalsType = [
        ("left", InternalTraversal.dp_clauseelement),
        ("right", InternalTraversal.dp_clauseelement),
        ("onclause", InternalTraversal.dp_clauseelement),
        ("isouter", InternalTraversal.dp_boolean),
        ("full", InternalTraversal.dp_boolean),
    ]

    _is_join = True

    left: FromClause
    right: FromClause
    onclause: Optional[ColumnElement[bool]]
    isouter: bool
    full: bool

    def __init__(
        self,
        left: _FromClauseArgument,
        right: _FromClauseArgument,
        onclause: Optional[_OnClauseArgument] = None,
        isouter: bool = False,
        full: bool = False,
    ):
        """Construct a new :class:`_expression.Join`.

        The usual entrypoint here is the :func:`_expression.join`
        function or the :meth:`_expression.FromClause.join` method of any
        :class:`_expression.FromClause` object.

        """

        # when deannotate was removed here, callcounts went up for ORM
        # compilation of eager joins, since there were more comparisons of
        # annotated objects.   test_orm.py -> test_fetch_results
        # was therefore changed to show a more real-world use case, where the
        # compilation is cached; there's no change in post-cache callcounts.
        # callcounts for a single compilation in that particular test
        # that includes about eight joins about 1100 extra fn calls, from
        # 29200 -> 30373

        self.left = coercions.expect(
            roles.FromClauseRole,
            left,
        )
        self.right = coercions.expect(
            roles.FromClauseRole,
            right,
        ).self_group()

        if onclause is None:
            self.onclause = self._match_primaries(self.left, self.right)
        else:
            # note: taken from If91f61527236fd4d7ae3cad1f24c38be921c90ba
            # not merged yet
            self.onclause = coercions.expect(
                roles.OnClauseRole, onclause
            ).self_group(against=operators._asbool)

        self.isouter = isouter
        self.full = full

    @util.ro_non_memoized_property
    def description(self) -> str:
        return "Join object on %s(%d) and %s(%d)" % (
            self.left.description,
            id(self.left),
            self.right.description,
            id(self.right),
        )

    def is_derived_from(self, fromclause: Optional[FromClause]) -> bool:
        return (
            # use hash() to ensure direct comparison to annotated works
            # as well
            hash(fromclause) == hash(self)
            or self.left.is_derived_from(fromclause)
            or self.right.is_derived_from(fromclause)
        )

    def self_group(
        self, against: Optional[OperatorType] = None
    ) -> FromGrouping:
        ...
        return FromGrouping(self)

    @util.preload_module("sqlalchemy.sql.util")
    def _populate_column_collection(self) -> None:
        sqlutil = util.preloaded.sql_util
        columns: List[KeyedColumnElement[Any]] = [c for c in self.left.c] + [
            c for c in self.right.c
        ]

        self.primary_key.extend(  # type: ignore
            sqlutil.reduce_columns(
                (c for c in columns if c.primary_key), self.onclause
            )
        )
        self._columns._populate_separate_keys(
            (col._tq_key_label, col) for col in columns
        )
        self.foreign_keys.update(  # type: ignore
            itertools.chain(*[col.foreign_keys for col in columns])
        )

    def _copy_internals(
        self, clone: _CloneCallableType = _clone, **kw: Any
    ) -> None:
        # see Select._copy_internals() for similar concept

        # here we pre-clone "left" and "right" so that we can
        # determine the new FROM clauses
        all_the_froms = set(
            itertools.chain(
                _from_objects(self.left),
                _from_objects(self.right),
            )
        )

        # run the clone on those.  these will be placed in the
        # cache used by the clone function
        new_froms = {f: clone(f, **kw) for f in all_the_froms}

        # set up a special replace function that will replace for
        # ColumnClause with parent table referring to those
        # replaced FromClause objects
        def replace(
            obj: Union[BinaryExpression[Any], ColumnClause[Any]],
            **kw: Any,
        ) -> Optional[KeyedColumnElement[ColumnElement[Any]]]:
            if isinstance(obj, ColumnClause) and obj.table in new_froms:
                newelem = new_froms[obj.table].corresponding_column(obj)
                return newelem
            return None

        kw["replace"] = replace

        # run normal _copy_internals.  the clones for
        # left and right will come from the clone function's
        # cache
        super()._copy_internals(clone=clone, **kw)

        self._reset_memoizations()

    def _refresh_for_new_column(self, column: ColumnElement[Any]) -> None:
        super()._refresh_for_new_column(column)
        self.left._refresh_for_new_column(column)
        self.right._refresh_for_new_column(column)

    def _match_primaries(
        self,
        left: FromClause,
        right: FromClause,
    ) -> ColumnElement[bool]:
        if isinstance(left, Join):
            left_right = left.right
        else:
            left_right = None
        return self._join_condition(left, right, a_subset=left_right)

    @classmethod
    def _join_condition(
        cls,
        a: FromClause,
        b: FromClause,
        *,
        a_subset: Optional[FromClause] = None,
        consider_as_foreign_keys: Optional[
            AbstractSet[ColumnClause[Any]]
        ] = None,
    ) -> ColumnElement[bool]:
        """Create a join condition between two tables or selectables.

        See sqlalchemy.sql.util.join_condition() for full docs.

        """
        constraints = cls._joincond_scan_left_right(
            a, a_subset, b, consider_as_foreign_keys
        )

        if len(constraints) > 1:
            cls._joincond_trim_constraints(
                a, b, constraints, consider_as_foreign_keys
            )

        if len(constraints) == 0:
            if isinstance(b, FromGrouping):
                hint = (
                    " Perhaps you meant to convert the right side to a "
                    "subquery using alias()?"
                )
            else:
                hint = ""
            raise exc.NoForeignKeysError(
                "Can't find any foreign key relationships "
                "between '%s' and '%s'.%s"
                % (a.description, b.description, hint)
            )

        crit = [(x == y) for x, y in list(constraints.values())[0]]
        if len(crit) == 1:
            return crit[0]
        else:
            return and_(*crit)

    @classmethod
    def _can_join(
        cls,
        left: FromClause,
        right: FromClause,
        *,
        consider_as_foreign_keys: Optional[
            AbstractSet[ColumnClause[Any]]
        ] = None,
    ) -> bool:
        if isinstance(left, Join):
            left_right = left.right
        else:
            left_right = None

        constraints = cls._joincond_scan_left_right(
            a=left,
            b=right,
            a_subset=left_right,
            consider_as_foreign_keys=consider_as_foreign_keys,
        )

        return bool(constraints)

    @classmethod
    @util.preload_module("sqlalchemy.sql.util")
    def _joincond_scan_left_right(
        cls,
        a: FromClause,
        a_subset: Optional[FromClause],
        b: FromClause,
        consider_as_foreign_keys: Optional[AbstractSet[ColumnClause[Any]]],
    ) -> collections.defaultdict[
        Optional[ForeignKeyConstraint],
        List[Tuple[ColumnClause[Any], ColumnClause[Any]]],
    ]:
        sql_util = util.preloaded.sql_util

        a = coercions.expect(roles.FromClauseRole, a)
        b = coercions.expect(roles.FromClauseRole, b)

        constraints: collections.defaultdict[
            Optional[ForeignKeyConstraint],
            List[Tuple[ColumnClause[Any], ColumnClause[Any]]],
        ] = collections.defaultdict(list)

        for left in (a_subset, a):
            if left is None:
                continue
            for fk in sorted(
                b.foreign_keys,
                key=lambda fk: fk.parent._creation_order,
            ):
                if (
                    consider_as_foreign_keys is not None
                    and fk.parent not in consider_as_foreign_keys
                ):
                    continue
                try:
                    col = fk.get_referent(left)
                except exc.NoReferenceError as nrte:
                    table_names = {t.name for t in sql_util.find_tables(left)}
                    if nrte.table_name in table_names:
                        raise
                    else:
                        continue

                if col is not None:
                    constraints[fk.constraint].append((col, fk.parent))
            if left is not b:
                for fk in sorted(
                    left.foreign_keys,
                    key=lambda fk: fk.parent._creation_order,
                ):
                    if (
                        consider_as_foreign_keys is not None
                        and fk.parent not in consider_as_foreign_keys
                    ):
                        continue
                    try:
                        col = fk.get_referent(b)
                    except exc.NoReferenceError as nrte:
                        table_names = {t.name for t in sql_util.find_tables(b)}
                        if nrte.table_name in table_names:
                            raise
                        else:
                            continue

                    if col is not None:
                        constraints[fk.constraint].append((col, fk.parent))
            if constraints:
                break
        return constraints

    @classmethod
    def _joincond_trim_constraints(
        cls,
        a: FromClause,
        b: FromClause,
        constraints: Dict[Any, Any],
        consider_as_foreign_keys: Optional[Any],
    ) -> None:
        # more than one constraint matched.  narrow down the list
        # to include just those FKCs that match exactly to
        # "consider_as_foreign_keys".
        if consider_as_foreign_keys:
            for const in list(constraints):
                if {f.parent for f in const.elements} != set(
                    consider_as_foreign_keys
                ):
                    del constraints[const]

        # if still multiple constraints, but
        # they all refer to the exact same end result, use it.
        if len(constraints) > 1:
            dedupe = {tuple(crit) for crit in constraints.values()}
            if len(dedupe) == 1:
                key = list(constraints)[0]
                constraints = {key: constraints[key]}

        if len(constraints) != 1:
            raise exc.AmbiguousForeignKeysError(
                "Can't determine join between '%s' and '%s'; "
                "tables have more than one foreign key "
                "constraint relationship between them. "
                "Please specify the 'onclause' of this "
                "join explicitly." % (a.description, b.description)
            )

    def select(self) -> Select[Any]:
        r"""Create a :class:`_expression.Select` from this
        :class:`_expression.Join`.

        E.g.::

            stmt = table_a.join(table_b, table_a.c.id == table_b.c.a_id)

            stmt = stmt.select()

        The above will produce a SQL string resembling::

            SELECT table_a.id, table_a.col, table_b.id, table_b.a_id
            FROM table_a JOIN table_b ON table_a.id = table_b.a_id

        """
        return Select(self.left, self.right).select_from(self)

    @util.preload_module("sqlalchemy.sql.util")
    def _anonymous_fromclause(
        self, name: Optional[str] = None, flat: bool = False
    ) -> TODO_Any:
        sqlutil = util.preloaded.sql_util
        if flat:
            if name is not None:
                raise exc.ArgumentError("Can't send name argument with flat")
            left_a, right_a = (
                self.left._anonymous_fromclause(flat=True),
                self.right._anonymous_fromclause(flat=True),
            )
            adapter = sqlutil.ClauseAdapter(left_a).chain(
                sqlutil.ClauseAdapter(right_a)
            )

            return left_a.join(
                right_a,
                adapter.traverse(self.onclause),
                isouter=self.isouter,
                full=self.full,
            )
        else:
            return (
                self.select()
                .set_label_style(LABEL_STYLE_TABLENAME_PLUS_COL)
                .correlate(None)
                .alias(name)
            )

    @util.ro_non_memoized_property
    def _hide_froms(self) -> Iterable[FromClause]:
        return itertools.chain(
            *[_from_objects(x.left, x.right) for x in self._cloned_set]
        )

    @util.ro_non_memoized_property
    def _from_objects(self) -> List[FromClause]:
        self_list: List[FromClause] = [self]
        return self_list + self.left._from_objects + self.right._from_objects


class NoInit:
    def __init__(self, *arg: Any, **kw: Any):
        raise NotImplementedError(
            "The %s class is not intended to be constructed "
            "directly.  Please use the %s() standalone "
            "function or the %s() method available from appropriate "
            "selectable objects."
            % (
                self.__class__.__name__,
                self.__class__.__name__.lower(),
                self.__class__.__name__.lower(),
            )
        )


class LateralFromClause(NamedFromClause):
    """mark a FROM clause as being able to render directly as LATERAL"""


# FromClause ->
#   AliasedReturnsRows
#        -> Alias   only for FromClause
#        -> Subquery  only for SelectBase
#        -> CTE only for HasCTE -> SelectBase, DML
#        -> Lateral -> FromClause, but we accept SelectBase
#           w/ non-deprecated coercion
#        -> TableSample -> only for FromClause


class AliasedReturnsRows(NoInit, NamedFromClause):
    """Base class of aliases against tables, subqueries, and other
    selectables."""

    _is_from_container = True

    _supports_derived_columns = False

    element: ReturnsRows

    _traverse_internals: _TraverseInternalsType = [
        ("element", InternalTraversal.dp_clauseelement),
        ("name", InternalTraversal.dp_anon_name),
    ]

    @classmethod
    def _construct(
        cls,
        selectable: Any,
        *,
        name: Optional[str] = None,
        **kw: Any,
    ) -> Self:
        obj = cls.__new__(cls)
        obj._init(selectable, name=name, **kw)
        return obj

    def _init(self, selectable: Any, *, name: Optional[str] = None) -> None:
        self.element = coercions.expect(
            roles.ReturnsRowsRole, selectable, apply_propagate_attrs=self
        )
        self.element = selectable
        self._orig_name = name
        if name is None:
            if (
                isinstance(selectable, FromClause)
                and selectable.named_with_column
            ):
                name = getattr(selectable, "name", None)
                if isinstance(name, _anonymous_label):
                    name = None
            name = _anonymous_label.safe_construct(id(self), name or "anon")
        self.name = name

    def _refresh_for_new_column(self, column: ColumnElement[Any]) -> None:
        super()._refresh_for_new_column(column)
        self.element._refresh_for_new_column(column)

    def _populate_column_collection(self) -> None:
        self.element._generate_fromclause_column_proxies(self)

    @util.ro_non_memoized_property
    def description(self) -> str:
        name = self.name
        if isinstance(name, _anonymous_label):
            name = "anon_1"

        return name

    @util.ro_non_memoized_property
    def implicit_returning(self) -> bool:
        return self.element.implicit_returning  # type: ignore

    @property
    def original(self) -> ReturnsRows:
        """Legacy for dialects that are referring to Alias.original."""
        return self.element

    def is_derived_from(self, fromclause: Optional[FromClause]) -> bool:
        if fromclause in self._cloned_set:
            return True
        return self.element.is_derived_from(fromclause)

    def _copy_internals(
        self, clone: _CloneCallableType = _clone, **kw: Any
    ) -> None:
        existing_element = self.element

        super()._copy_internals(clone=clone, **kw)

        # the element clone is usually against a Table that returns the
        # same object.  don't reset exported .c. collections and other
        # memoized details if it was not changed.  this saves a lot on
        # performance.
        if existing_element is not self.element:
            self._reset_column_collection()

    @property
    def _from_objects(self) -> List[FromClause]:
        return [self]


class FromClauseAlias(AliasedReturnsRows):
    element: FromClause


class Alias(roles.DMLTableRole, FromClauseAlias):
    """Represents an table or selectable alias (AS).

    Represents an alias, as typically applied to any table or
    sub-select within a SQL statement using the ``AS`` keyword (or
    without the keyword on certain databases such as Oracle).

    This object is constructed from the :func:`_expression.alias` module
    level function as well as the :meth:`_expression.FromClause.alias`
    method available
    on all :class:`_expression.FromClause` subclasses.

    .. seealso::

        :meth:`_expression.FromClause.alias`

    """

    __visit_name__ = "alias"

    inherit_cache = True

    element: FromClause

    @classmethod
    def _factory(
        cls,
        selectable: FromClause,
        name: Optional[str] = None,
        flat: bool = False,
    ) -> NamedFromClause:
        return coercions.expect(
            roles.FromClauseRole, selectable, allow_select=True
        ).alias(name=name, flat=flat)


class TableValuedAlias(LateralFromClause, Alias):
    """An alias against a "table valued" SQL function.

    This construct provides for a SQL function that returns columns
    to be used in the FROM clause of a SELECT statement.   The
    object is generated using the :meth:`_functions.FunctionElement.table_valued`
    method, e.g.:

    .. sourcecode:: pycon+sql

        >>> from sqlalchemy import select, func
        >>> fn = func.json_array_elements_text('["one", "two", "three"]').table_valued("value")
        >>> print(select(fn.c.value))
        {printsql}SELECT anon_1.value
        FROM json_array_elements_text(:json_array_elements_text_1) AS anon_1

    .. versionadded:: 1.4.0b2

    .. seealso::

        :ref:`tutorial_functions_table_valued` - in the :ref:`unified_tutorial`

    """  # noqa: E501

    __visit_name__ = "table_valued_alias"

    _supports_derived_columns = True
    _render_derived = False
    _render_derived_w_types = False
    joins_implicitly = False

    _traverse_internals: _TraverseInternalsType = [
        ("element", InternalTraversal.dp_clauseelement),
        ("name", InternalTraversal.dp_anon_name),
        ("_tableval_type", InternalTraversal.dp_type),
        ("_render_derived", InternalTraversal.dp_boolean),
        ("_render_derived_w_types", InternalTraversal.dp_boolean),
    ]

    def _init(
        self,
        selectable: Any,
        *,
        name: Optional[str] = None,
        table_value_type: Optional[TableValueType] = None,
        joins_implicitly: bool = False,
    ) -> None:
        super()._init(selectable, name=name)

        self.joins_implicitly = joins_implicitly
        self._tableval_type = (
            type_api.TABLEVALUE
            if table_value_type is None
            else table_value_type
        )

    @HasMemoized.memoized_attribute
    def column(self) -> TableValuedColumn[Any]:
        """Return a column expression representing this
        :class:`_sql.TableValuedAlias`.

        This accessor is used to implement the
        :meth:`_functions.FunctionElement.column_valued` method. See that
        method for further details.

        E.g.:

        .. sourcecode:: pycon+sql

            >>> print(select(func.some_func().table_valued("value").column))
            {printsql}SELECT anon_1 FROM some_func() AS anon_1

        .. seealso::

            :meth:`_functions.FunctionElement.column_valued`

        """

        return TableValuedColumn(self, self._tableval_type)

    def alias(
        self, name: Optional[str] = None, flat: bool = False
    ) -> TableValuedAlias:
        """Return a new alias of this :class:`_sql.TableValuedAlias`.

        This creates a distinct FROM object that will be distinguished
        from the original one when used in a SQL statement.

        """

        tva: TableValuedAlias = TableValuedAlias._construct(
            self,
            name=name,
            table_value_type=self._tableval_type,
            joins_implicitly=self.joins_implicitly,
        )

        if self._render_derived:
            tva._render_derived = True
            tva._render_derived_w_types = self._render_derived_w_types

        return tva

    def lateral(self, name: Optional[str] = None) -> LateralFromClause:
        """Return a new :class:`_sql.TableValuedAlias` with the lateral flag
        set, so that it renders as LATERAL.

        .. seealso::

            :func:`_expression.lateral`

        """
        tva = self.alias(name=name)
        tva._is_lateral = True
        return tva

    def render_derived(
        self,
        name: Optional[str] = None,
        with_types: bool = False,
    ) -> TableValuedAlias:
        """Apply "render derived" to this :class:`_sql.TableValuedAlias`.

        This has the effect of the individual column names listed out
        after the alias name in the "AS" sequence, e.g.:

        .. sourcecode:: pycon+sql

            >>> print(
            ...     select(
            ...         func.unnest(array(["one", "two", "three"])).
                        table_valued("x", with_ordinality="o").render_derived()
            ...     )
            ... )
            {printsql}SELECT anon_1.x, anon_1.o
            FROM unnest(ARRAY[%(param_1)s, %(param_2)s, %(param_3)s]) WITH ORDINALITY AS anon_1(x, o)

        The ``with_types`` keyword will render column types inline within
        the alias expression (this syntax currently applies to the
        PostgreSQL database):

        .. sourcecode:: pycon+sql

            >>> print(
            ...     select(
            ...         func.json_to_recordset(
            ...             '[{"a":1,"b":"foo"},{"a":"2","c":"bar"}]'
            ...         )
            ...         .table_valued(column("a", Integer), column("b", String))
            ...         .render_derived(with_types=True)
            ...     )
            ... )
            {printsql}SELECT anon_1.a, anon_1.b FROM json_to_recordset(:json_to_recordset_1)
            AS anon_1(a INTEGER, b VARCHAR)

        :param name: optional string name that will be applied to the alias
         generated.  If left as None, a unique anonymizing name will be used.

        :param with_types: if True, the derived columns will include the
         datatype specification with each column. This is a special syntax
         currently known to be required by PostgreSQL for some SQL functions.

        """  # noqa: E501

        # note: don't use the @_generative system here, keep a reference
        # to the original object.  otherwise you can have re-use of the
        # python id() of the original which can cause name conflicts if
        # a new anon-name grabs the same identifier as the local anon-name
        # (just saw it happen on CI)

        # construct against original to prevent memory growth
        # for repeated generations
        new_alias: TableValuedAlias = TableValuedAlias._construct(
            self.element,
            name=name,
            table_value_type=self._tableval_type,
            joins_implicitly=self.joins_implicitly,
        )
        new_alias._render_derived = True
        new_alias._render_derived_w_types = with_types
        return new_alias


class Lateral(FromClauseAlias, LateralFromClause):
    """Represent a LATERAL subquery.

    This object is constructed from the :func:`_expression.lateral` module
    level function as well as the :meth:`_expression.FromClause.lateral`
    method available
    on all :class:`_expression.FromClause` subclasses.

    While LATERAL is part of the SQL standard, currently only more recent
    PostgreSQL versions provide support for this keyword.

    .. seealso::

        :ref:`tutorial_lateral_correlation` -  overview of usage.

    """

    __visit_name__ = "lateral"
    _is_lateral = True

    inherit_cache = True

    @classmethod
    def _factory(
        cls,
        selectable: Union[SelectBase, _FromClauseArgument],
        name: Optional[str] = None,
    ) -> LateralFromClause:
        return coercions.expect(
            roles.FromClauseRole, selectable, explicit_subquery=True
        ).lateral(name=name)


class TableSample(FromClauseAlias):
    """Represent a TABLESAMPLE clause.

    This object is constructed from the :func:`_expression.tablesample` module
    level function as well as the :meth:`_expression.FromClause.tablesample`
    method
    available on all :class:`_expression.FromClause` subclasses.

    .. seealso::

        :func:`_expression.tablesample`

    """

    __visit_name__ = "tablesample"

    _traverse_internals: _TraverseInternalsType = (
        AliasedReturnsRows._traverse_internals
        + [
            ("sampling", InternalTraversal.dp_clauseelement),
            ("seed", InternalTraversal.dp_clauseelement),
        ]
    )

    @classmethod
    def _factory(
        cls,
        selectable: _FromClauseArgument,
        sampling: Union[float, Function[Any]],
        name: Optional[str] = None,
        seed: Optional[roles.ExpressionElementRole[Any]] = None,
    ) -> TableSample:
        return coercions.expect(roles.FromClauseRole, selectable).tablesample(
            sampling, name=name, seed=seed
        )

    @util.preload_module("sqlalchemy.sql.functions")
    def _init(  # type: ignore[override]
        self,
        selectable: Any,
        *,
        name: Optional[str] = None,
        sampling: Union[float, Function[Any]],
        seed: Optional[roles.ExpressionElementRole[Any]] = None,
    ) -> None:
        assert sampling is not None
        functions = util.preloaded.sql_functions
        if not isinstance(sampling, functions.Function):
            sampling = functions.func.system(sampling)

        self.sampling: Function[Any] = sampling
        self.seed = seed
        super()._init(selectable, name=name)

    def _get_method(self) -> Function[Any]:
        return self.sampling


class CTE(
    roles.DMLTableRole,
    roles.IsCTERole,
    Generative,
    HasPrefixes,
    HasSuffixes,
    AliasedReturnsRows,
):
    """Represent a Common Table Expression.

    The :class:`_expression.CTE` object is obtained using the
    :meth:`_sql.SelectBase.cte` method from any SELECT statement. A less often
    available syntax also allows use of the :meth:`_sql.HasCTE.cte` method
    present on :term:`DML` constructs such as :class:`_sql.Insert`,
    :class:`_sql.Update` and
    :class:`_sql.Delete`.   See the :meth:`_sql.HasCTE.cte` method for
    usage details on CTEs.

    .. seealso::

        :ref:`tutorial_subqueries_ctes` - in the 2.0 tutorial

        :meth:`_sql.HasCTE.cte` - examples of calling styles

    """

    __visit_name__ = "cte"

    _traverse_internals: _TraverseInternalsType = (
        AliasedReturnsRows._traverse_internals
        + [
            ("_cte_alias", InternalTraversal.dp_clauseelement),
            ("_restates", InternalTraversal.dp_clauseelement),
            ("recursive", InternalTraversal.dp_boolean),
            ("nesting", InternalTraversal.dp_boolean),
        ]
        + HasPrefixes._has_prefixes_traverse_internals
        + HasSuffixes._has_suffixes_traverse_internals
    )

    element: HasCTE

    @classmethod
    def _factory(
        cls,
        selectable: HasCTE,
        name: Optional[str] = None,
        recursive: bool = False,
    ) -> CTE:
        r"""Return a new :class:`_expression.CTE`,
        or Common Table Expression instance.

        Please see :meth:`_expression.HasCTE.cte` for detail on CTE usage.

        """
        return coercions.expect(roles.HasCTERole, selectable).cte(
            name=name, recursive=recursive
        )

    def _init(
        self,
        selectable: Select[Any],
        *,
        name: Optional[str] = None,
        recursive: bool = False,
        nesting: bool = False,
        _cte_alias: Optional[CTE] = None,
        _restates: Optional[CTE] = None,
        _prefixes: Optional[Tuple[()]] = None,
        _suffixes: Optional[Tuple[()]] = None,
    ) -> None:
        self.recursive = recursive
        self.nesting = nesting
        self._cte_alias = _cte_alias
        # Keep recursivity reference with union/union_all
        self._restates = _restates
        if _prefixes:
            self._prefixes = _prefixes
        if _suffixes:
            self._suffixes = _suffixes
        super()._init(selectable, name=name)

    def _populate_column_collection(self) -> None:
        if self._cte_alias is not None:
            self._cte_alias._generate_fromclause_column_proxies(self)
        else:
            self.element._generate_fromclause_column_proxies(self)

    def alias(self, name: Optional[str] = None, flat: bool = False) -> CTE:
        """Return an :class:`_expression.Alias` of this
        :class:`_expression.CTE`.

        This method is a CTE-specific specialization of the
        :meth:`_expression.FromClause.alias` method.

        .. seealso::

            :ref:`tutorial_using_aliases`

            :func:`_expression.alias`

        """
        return CTE._construct(
            self.element,
            name=name,
            recursive=self.recursive,
            nesting=self.nesting,
            _cte_alias=self,
            _prefixes=self._prefixes,
            _suffixes=self._suffixes,
        )

    def union(self, *other: _SelectStatementForCompoundArgument) -> CTE:
        r"""Return a new :class:`_expression.CTE` with a SQL ``UNION``
        of the original CTE against the given selectables provided
        as positional arguments.

        :param \*other: one or more elements with which to create a
         UNION.

         .. versionchanged:: 1.4.28 multiple elements are now accepted.

        .. seealso::

            :meth:`_sql.HasCTE.cte` - examples of calling styles

        """
        assert is_select_statement(
            self.element
        ), f"CTE element f{self.element} does not support union()"

        return CTE._construct(
            self.element.union(*other),
            name=self.name,
            recursive=self.recursive,
            nesting=self.nesting,
            _restates=self,
            _prefixes=self._prefixes,
            _suffixes=self._suffixes,
        )

    def union_all(self, *other: _SelectStatementForCompoundArgument) -> CTE:
        r"""Return a new :class:`_expression.CTE` with a SQL ``UNION ALL``
        of the original CTE against the given selectables provided
        as positional arguments.

        :param \*other: one or more elements with which to create a
         UNION.

         .. versionchanged:: 1.4.28 multiple elements are now accepted.

        .. seealso::

            :meth:`_sql.HasCTE.cte` - examples of calling styles

        """

        assert is_select_statement(
            self.element
        ), f"CTE element f{self.element} does not support union_all()"

        return CTE._construct(
            self.element.union_all(*other),
            name=self.name,
            recursive=self.recursive,
            nesting=self.nesting,
            _restates=self,
            _prefixes=self._prefixes,
            _suffixes=self._suffixes,
        )

    def _get_reference_cte(self) -> CTE:
        """
        A recursive CTE is updated to attach the recursive part.
        Updated CTEs should still refer to the original CTE.
        This function returns this reference identifier.
        """
        return self._restates if self._restates is not None else self


class _CTEOpts(NamedTuple):
    nesting: bool


class _ColumnsPlusNames(NamedTuple):
    required_label_name: Optional[str]
    """
    string label name, if non-None, must be rendered as a
    label, i.e. "AS <name>"
    """

    proxy_key: Optional[str]
    """
    proxy_key that is to be part of the result map for this
    col.  this is also the key in a fromclause.c or
    select.selected_columns collection
    """

    fallback_label_name: Optional[str]
    """
    name that can be used to render an "AS <name>" when
    we have to render a label even though
    required_label_name was not given
    """

    column: Union[ColumnElement[Any], TextClause]
    """
    the ColumnElement itself
    """

    repeated: bool
    """
    True if this is a duplicate of a previous column
    in the list of columns
    """


class SelectsRows(ReturnsRows):
    """Sub-base of ReturnsRows for elements that deliver rows
    directly, namely SELECT and INSERT/UPDATE/DELETE..RETURNING"""

    _label_style: SelectLabelStyle = LABEL_STYLE_NONE

    def _generate_columns_plus_names(
        self,
        anon_for_dupe_key: bool,
        cols: Optional[_SelectIterable] = None,
    ) -> List[_ColumnsPlusNames]:
        """Generate column names as rendered in a SELECT statement by
        the compiler.

        This is distinct from the _column_naming_convention generator that's
        intended for population of .c collections and similar, which has
        different rules.   the collection returned here calls upon the
        _column_naming_convention as well.

        """

        if cols is None:
            cols = self._all_selected_columns

        key_naming_convention = SelectState._column_naming_convention(
            self._label_style
        )

        names = {}

        result: List[_ColumnsPlusNames] = []
        result_append = result.append

        table_qualified = self._label_style is LABEL_STYLE_TABLENAME_PLUS_COL
        label_style_none = self._label_style is LABEL_STYLE_NONE

        # a counter used for "dedupe" labels, which have double underscores
        # in them and are never referred by name; they only act
        # as positional placeholders.  they need only be unique within
        # the single columns clause they're rendered within (required by
        # some dbs such as mysql).  So their anon identity is tracked against
        # a fixed counter rather than hash() identity.
        dedupe_hash = 1

        for c in cols:
            repeated = False

            if not c._render_label_in_columns_clause:
                effective_name = required_label_name = fallback_label_name = (
                    None
                )
            elif label_style_none:
                if TYPE_CHECKING:
                    assert is_column_element(c)

                effective_name = required_label_name = None
                fallback_label_name = c._non_anon_label or c._anon_name_label
            else:
                if TYPE_CHECKING:
                    assert is_column_element(c)

                if table_qualified:
                    required_label_name = effective_name = (
                        fallback_label_name
                    ) = c._tq_label
                else:
                    effective_name = fallback_label_name = c._non_anon_label
                    required_label_name = None

                if effective_name is None:
                    # it seems like this could be _proxy_key and we would
                    # not need _expression_label but it isn't
                    # giving us a clue when to use anon_label instead
                    expr_label = c._expression_label
                    if expr_label is None:
                        repeated = c._anon_name_label in names
                        names[c._anon_name_label] = c
                        effective_name = required_label_name = None

                        if repeated:
                            # here, "required_label_name" is sent as
                            # "None" and "fallback_label_name" is sent.
                            if table_qualified:
                                fallback_label_name = (
                                    c._dedupe_anon_tq_label_idx(dedupe_hash)
                                )
                                dedupe_hash += 1
                            else:
                                fallback_label_name = c._dedupe_anon_label_idx(
                                    dedupe_hash
                                )
                                dedupe_hash += 1
                        else:
                            fallback_label_name = c._anon_name_label
                    else:
                        required_label_name = effective_name = (
                            fallback_label_name
                        ) = expr_label

            if effective_name is not None:
                if TYPE_CHECKING:
                    assert is_column_element(c)

                if effective_name in names:
                    # when looking to see if names[name] is the same column as
                    # c, use hash(), so that an annotated version of the column
                    # is seen as the same as the non-annotated
                    if hash(names[effective_name]) != hash(c):
                        # different column under the same name.  apply
                        # disambiguating label
                        if table_qualified:
                            required_label_name = fallback_label_name = (
                                c._anon_tq_label
                            )
                        else:
                            required_label_name = fallback_label_name = (
                                c._anon_name_label
                            )

                        if anon_for_dupe_key and required_label_name in names:
                            # here, c._anon_tq_label is definitely unique to
                            # that column identity (or annotated version), so
                            # this should always be true.
                            # this is also an infrequent codepath because
                            # you need two levels of duplication to be here
                            assert hash(names[required_label_name]) == hash(c)

                            # the column under the disambiguating label is
                            # already present.  apply the "dedupe" label to
                            # subsequent occurrences of the column so that the
                            # original stays non-ambiguous
                            if table_qualified:
                                required_label_name = fallback_label_name = (
                                    c._dedupe_anon_tq_label_idx(dedupe_hash)
                                )
                                dedupe_hash += 1
                            else:
                                required_label_name = fallback_label_name = (
                                    c._dedupe_anon_label_idx(dedupe_hash)
                                )
                                dedupe_hash += 1
                            repeated = True
                        else:
                            names[required_label_name] = c
                    elif anon_for_dupe_key:
                        # same column under the same name. apply the "dedupe"
                        # label so that the original stays non-ambiguous
                        if table_qualified:
                            required_label_name = fallback_label_name = (
                                c._dedupe_anon_tq_label_idx(dedupe_hash)
                            )
                            dedupe_hash += 1
                        else:
                            required_label_name = fallback_label_name = (
                                c._dedupe_anon_label_idx(dedupe_hash)
                            )
                            dedupe_hash += 1
                        repeated = True
                else:
                    names[effective_name] = c

            result_append(
                _ColumnsPlusNames(
                    required_label_name,
                    key_naming_convention(c),
                    fallback_label_name,
                    c,
                    repeated,
                )
            )

        return result


class HasCTE(roles.HasCTERole, SelectsRows):
    """Mixin that declares a class to include CTE support."""

    _has_ctes_traverse_internals: _TraverseInternalsType = [
        ("_independent_ctes", InternalTraversal.dp_clauseelement_list),
        ("_independent_ctes_opts", InternalTraversal.dp_plain_obj),
    ]

    _independent_ctes: Tuple[CTE, ...] = ()
    _independent_ctes_opts: Tuple[_CTEOpts, ...] = ()

    @_generative
    def add_cte(self, *ctes: CTE, nest_here: bool = False) -> Self:
        r"""Add one or more :class:`_sql.CTE` constructs to this statement.

        This method will associate the given :class:`_sql.CTE` constructs with
        the parent statement such that they will each be unconditionally
        rendered in the WITH clause of the final statement, even if not
        referenced elsewhere within the statement or any sub-selects.

        The optional :paramref:`.HasCTE.add_cte.nest_here` parameter when set
        to True will have the effect that each given :class:`_sql.CTE` will
        render in a WITH clause rendered directly along with this statement,
        rather than being moved to the top of the ultimate rendered statement,
        even if this statement is rendered as a subquery within a larger
        statement.

        This method has two general uses. One is to embed CTE statements that
        serve some purpose without being referenced explicitly, such as the use
        case of embedding a DML statement such as an INSERT or UPDATE as a CTE
        inline with a primary statement that may draw from its results
        indirectly.  The other is to provide control over the exact placement
        of a particular series of CTE constructs that should remain rendered
        directly in terms of a particular statement that may be nested in a
        larger statement.

        E.g.::

            from sqlalchemy import table, column, select
            t = table('t', column('c1'), column('c2'))

            ins = t.insert().values({"c1": "x", "c2": "y"}).cte()

            stmt = select(t).add_cte(ins)

        Would render::

            WITH anon_1 AS
            (INSERT INTO t (c1, c2) VALUES (:param_1, :param_2))
            SELECT t.c1, t.c2
            FROM t

        Above, the "anon_1" CTE is not referenced in the SELECT
        statement, however still accomplishes the task of running an INSERT
        statement.

        Similarly in a DML-related context, using the PostgreSQL
        :class:`_postgresql.Insert` construct to generate an "upsert"::

            from sqlalchemy import table, column
            from sqlalchemy.dialects.postgresql import insert

            t = table("t", column("c1"), column("c2"))

            delete_statement_cte = (
                t.delete().where(t.c.c1 < 1).cte("deletions")
            )

            insert_stmt = insert(t).values({"c1": 1, "c2": 2})
            update_statement = insert_stmt.on_conflict_do_update(
                index_elements=[t.c.c1],
                set_={
                    "c1": insert_stmt.excluded.c1,
                    "c2": insert_stmt.excluded.c2,
                },
            ).add_cte(delete_statement_cte)

            print(update_statement)

        The above statement renders as::

            WITH deletions AS
            (DELETE FROM t WHERE t.c1 < %(c1_1)s)
            INSERT INTO t (c1, c2) VALUES (%(c1)s, %(c2)s)
            ON CONFLICT (c1) DO UPDATE SET c1 = excluded.c1, c2 = excluded.c2

        .. versionadded:: 1.4.21

        :param \*ctes: zero or more :class:`.CTE` constructs.

         .. versionchanged:: 2.0  Multiple CTE instances are accepted

        :param nest_here: if True, the given CTE or CTEs will be rendered
         as though they specified the :paramref:`.HasCTE.cte.nesting` flag
         to ``True`` when they were added to this :class:`.HasCTE`.
         Assuming the given CTEs are not referenced in an outer-enclosing
         statement as well, the CTEs given should render at the level of
         this statement when this flag is given.

         .. versionadded:: 2.0

         .. seealso::

            :paramref:`.HasCTE.cte.nesting`


        """
        opt = _CTEOpts(
            nest_here,
        )
        for cte in ctes:
            cte = coercions.expect(roles.IsCTERole, cte)
            self._independent_ctes += (cte,)
            self._independent_ctes_opts += (opt,)
        return self

    def cte(
        self,
        name: Optional[str] = None,
        recursive: bool = False,
        nesting: bool = False,
    ) -> CTE:
        r"""Return a new :class:`_expression.CTE`,
        or Common Table Expression instance.

        Common table expressions are a SQL standard whereby SELECT
        statements can draw upon secondary statements specified along
        with the primary statement, using a clause called "WITH".
        Special semantics regarding UNION can also be employed to
        allow "recursive" queries, where a SELECT statement can draw
        upon the set of rows that have previously been selected.

        CTEs can also be applied to DML constructs UPDATE, INSERT
        and DELETE on some databases, both as a source of CTE rows
        when combined with RETURNING, as well as a consumer of
        CTE rows.

        SQLAlchemy detects :class:`_expression.CTE` objects, which are treated
        similarly to :class:`_expression.Alias` objects, as special elements
        to be delivered to the FROM clause of the statement as well
        as to a WITH clause at the top of the statement.

        For special prefixes such as PostgreSQL "MATERIALIZED" and
        "NOT MATERIALIZED", the :meth:`_expression.CTE.prefix_with`
        method may be
        used to establish these.

        .. versionchanged:: 1.3.13 Added support for prefixes.
           In particular - MATERIALIZED and NOT MATERIALIZED.

        :param name: name given to the common table expression.  Like
         :meth:`_expression.FromClause.alias`, the name can be left as
         ``None`` in which case an anonymous symbol will be used at query
         compile time.
        :param recursive: if ``True``, will render ``WITH RECURSIVE``.
         A recursive common table expression is intended to be used in
         conjunction with UNION ALL in order to derive rows
         from those already selected.
        :param nesting: if ``True``, will render the CTE locally to the
         statement in which it is referenced.   For more complex scenarios,
         the :meth:`.HasCTE.add_cte` method using the
         :paramref:`.HasCTE.add_cte.nest_here`
         parameter may also be used to more carefully
         control the exact placement of a particular CTE.

         .. versionadded:: 1.4.24

         .. seealso::

            :meth:`.HasCTE.add_cte`

        The following examples include two from PostgreSQL's documentation at
        https://www.postgresql.org/docs/current/static/queries-with.html,
        as well as additional examples.

        Example 1, non recursive::

            from sqlalchemy import (Table, Column, String, Integer,
                                    MetaData, select, func)

            metadata = MetaData()

            orders = Table('orders', metadata,
                Column('region', String),
                Column('amount', Integer),
                Column('product', String),
                Column('quantity', Integer)
            )

            regional_sales = select(
                                orders.c.region,
                                func.sum(orders.c.amount).label('total_sales')
                            ).group_by(orders.c.region).cte("regional_sales")


            top_regions = select(regional_sales.c.region).\
                    where(
                        regional_sales.c.total_sales >
                        select(
                            func.sum(regional_sales.c.total_sales) / 10
                        )
                    ).cte("top_regions")

            statement = select(
                        orders.c.region,
                        orders.c.product,
                        func.sum(orders.c.quantity).label("product_units"),
                        func.sum(orders.c.amount).label("product_sales")
                ).where(orders.c.region.in_(
                    select(top_regions.c.region)
                )).group_by(orders.c.region, orders.c.product)

            result = conn.execute(statement).fetchall()

        Example 2, WITH RECURSIVE::

            from sqlalchemy import (Table, Column, String, Integer,
                                    MetaData, select, func)

            metadata = MetaData()

            parts = Table('parts', metadata,
                Column('part', String),
                Column('sub_part', String),
                Column('quantity', Integer),
            )

            included_parts = select(\
                parts.c.sub_part, parts.c.part, parts.c.quantity\
                ).\
                where(parts.c.part=='our part').\
                cte(recursive=True)


            incl_alias = included_parts.alias()
            parts_alias = parts.alias()
            included_parts = included_parts.union_all(
                select(
                    parts_alias.c.sub_part,
                    parts_alias.c.part,
                    parts_alias.c.quantity
                ).\
                where(parts_alias.c.part==incl_alias.c.sub_part)
            )

            statement = select(
                        included_parts.c.sub_part,
                        func.sum(included_parts.c.quantity).
                          label('total_quantity')
                    ).\
                    group_by(included_parts.c.sub_part)

            result = conn.execute(statement).fetchall()

        Example 3, an upsert using UPDATE and INSERT with CTEs::

            from datetime import date
            from sqlalchemy import (MetaData, Table, Column, Integer,
                                    Date, select, literal, and_, exists)

            metadata = MetaData()

            visitors = Table('visitors', metadata,
                Column('product_id', Integer, primary_key=True),
                Column('date', Date, primary_key=True),
                Column('count', Integer),
            )

            # add 5 visitors for the product_id == 1
            product_id = 1
            day = date.today()
            count = 5

            update_cte = (
                visitors.update()
                .where(and_(visitors.c.product_id == product_id,
                            visitors.c.date == day))
                .values(count=visitors.c.count + count)
                .returning(literal(1))
                .cte('update_cte')
            )

            upsert = visitors.insert().from_select(
                [visitors.c.product_id, visitors.c.date, visitors.c.count],
                select(literal(product_id), literal(day), literal(count))
                    .where(~exists(update_cte.select()))
            )

            connection.execute(upsert)

        Example 4, Nesting CTE (SQLAlchemy 1.4.24 and above)::

            value_a = select(
                literal("root").label("n")
            ).cte("value_a")

            # A nested CTE with the same name as the root one
            value_a_nested = select(
                literal("nesting").label("n")
            ).cte("value_a", nesting=True)

            # Nesting CTEs takes ascendency locally
            # over the CTEs at a higher level
            value_b = select(value_a_nested.c.n).cte("value_b")

            value_ab = select(value_a.c.n.label("a"), value_b.c.n.label("b"))

        The above query will render the second CTE nested inside the first,
        shown with inline parameters below as::

            WITH
                value_a AS
                    (SELECT 'root' AS n),
                value_b AS
                    (WITH value_a AS
                        (SELECT 'nesting' AS n)
                    SELECT value_a.n AS n FROM value_a)
            SELECT value_a.n AS a, value_b.n AS b
            FROM value_a, value_b

        The same CTE can be set up using the :meth:`.HasCTE.add_cte` method
        as follows (SQLAlchemy 2.0 and above)::

            value_a = select(
                literal("root").label("n")
            ).cte("value_a")

            # A nested CTE with the same name as the root one
            value_a_nested = select(
                literal("nesting").label("n")
            ).cte("value_a")

            # Nesting CTEs takes ascendency locally
            # over the CTEs at a higher level
            value_b = (
                select(value_a_nested.c.n).
                add_cte(value_a_nested, nest_here=True).
                cte("value_b")
            )

            value_ab = select(value_a.c.n.label("a"), value_b.c.n.label("b"))

        Example 5, Non-Linear CTE (SQLAlchemy 1.4.28 and above)::

            edge = Table(
                "edge",
                metadata,
                Column("id", Integer, primary_key=True),
                Column("left", Integer),
                Column("right", Integer),
            )

            root_node = select(literal(1).label("node")).cte(
                "nodes", recursive=True
            )

            left_edge = select(edge.c.left).join(
                root_node, edge.c.right == root_node.c.node
            )
            right_edge = select(edge.c.right).join(
                root_node, edge.c.left == root_node.c.node
            )

            subgraph_cte = root_node.union(left_edge, right_edge)

            subgraph = select(subgraph_cte)

        The above query will render 2 UNIONs inside the recursive CTE::

            WITH RECURSIVE nodes(node) AS (
                    SELECT 1 AS node
                UNION
                    SELECT edge."left" AS "left"
                    FROM edge JOIN nodes ON edge."right" = nodes.node
                UNION
                    SELECT edge."right" AS "right"
                    FROM edge JOIN nodes ON edge."left" = nodes.node
            )
            SELECT nodes.node FROM nodes

        .. seealso::

            :meth:`_orm.Query.cte` - ORM version of
            :meth:`_expression.HasCTE.cte`.

        """
        return CTE._construct(
            self, name=name, recursive=recursive, nesting=nesting
        )


class Subquery(AliasedReturnsRows):
    """Represent a subquery of a SELECT.

    A :class:`.Subquery` is created by invoking the
    :meth:`_expression.SelectBase.subquery` method, or for convenience the
    :meth:`_expression.SelectBase.alias` method, on any
    :class:`_expression.SelectBase` subclass
    which includes :class:`_expression.Select`,
    :class:`_expression.CompoundSelect`, and
    :class:`_expression.TextualSelect`.  As rendered in a FROM clause,
    it represents the
    body of the SELECT statement inside of parenthesis, followed by the usual
    "AS <somename>" that defines all "alias" objects.

    The :class:`.Subquery` object is very similar to the
    :class:`_expression.Alias`
    object and can be used in an equivalent way.    The difference between
    :class:`_expression.Alias` and :class:`.Subquery` is that
    :class:`_expression.Alias` always
    contains a :class:`_expression.FromClause` object whereas
    :class:`.Subquery`
    always contains a :class:`_expression.SelectBase` object.

    .. versionadded:: 1.4 The :class:`.Subquery` class was added which now
       serves the purpose of providing an aliased version of a SELECT
       statement.

    """

    __visit_name__ = "subquery"

    _is_subquery = True

    inherit_cache = True

    element: SelectBase

    @classmethod
    def _factory(
        cls, selectable: SelectBase, name: Optional[str] = None
    ) -> Subquery:
        """Return a :class:`.Subquery` object."""

        return coercions.expect(
            roles.SelectStatementRole, selectable
        ).subquery(name=name)

    @util.deprecated(
        "1.4",
        "The :meth:`.Subquery.as_scalar` method, which was previously "
        "``Alias.as_scalar()`` prior to version 1.4, is deprecated and "
        "will be removed in a future release; Please use the "
        ":meth:`_expression.Select.scalar_subquery` method of the "
        ":func:`_expression.select` "
        "construct before constructing a subquery object, or with the ORM "
        "use the :meth:`_query.Query.scalar_subquery` method.",
    )
    def as_scalar(self) -> ScalarSelect[Any]:
        return self.element.set_label_style(LABEL_STYLE_NONE).scalar_subquery()


class FromGrouping(GroupedElement, FromClause):
    """Represent a grouping of a FROM clause"""

    _traverse_internals: _TraverseInternalsType = [
        ("element", InternalTraversal.dp_clauseelement)
    ]

    element: FromClause

    def __init__(self, element: FromClause):
        self.element = coercions.expect(roles.FromClauseRole, element)

    def _init_collections(self) -> None:
        pass

    @util.ro_non_memoized_property
    def columns(
        self,
    ) -> ReadOnlyColumnCollection[str, KeyedColumnElement[Any]]:
        return self.element.columns

    @util.ro_non_memoized_property
    def c(self) -> ReadOnlyColumnCollection[str, KeyedColumnElement[Any]]:
        return self.element.columns

    @property
    def primary_key(self) -> Iterable[NamedColumn[Any]]:
        return self.element.primary_key

    @property
    def foreign_keys(self) -> Iterable[ForeignKey]:
        return self.element.foreign_keys

    def is_derived_from(self, fromclause: Optional[FromClause]) -> bool:
        return self.element.is_derived_from(fromclause)

    def alias(
        self, name: Optional[str] = None, flat: bool = False
    ) -> NamedFromGrouping:
        return NamedFromGrouping(self.element.alias(name=name, flat=flat))

    def _anonymous_fromclause(self, **kw: Any) -> FromGrouping:
        return FromGrouping(self.element._anonymous_fromclause(**kw))

    @util.ro_non_memoized_property
    def _hide_froms(self) -> Iterable[FromClause]:
        return self.element._hide_froms

    @util.ro_non_memoized_property
    def _from_objects(self) -> List[FromClause]:
        return self.element._from_objects

    def __getstate__(self) -> Dict[str, FromClause]:
        return {"element": self.element}

    def __setstate__(self, state: Dict[str, FromClause]) -> None:
        self.element = state["element"]


class NamedFromGrouping(FromGrouping, NamedFromClause):
    """represent a grouping of a named FROM clause

    .. versionadded:: 2.0

    """

    inherit_cache = True


class TableClause(roles.DMLTableRole, Immutable, NamedFromClause):
    """Represents a minimal "table" construct.

    This is a lightweight table object that has only a name, a
    collection of columns, which are typically produced
    by the :func:`_expression.column` function, and a schema::

        from sqlalchemy import table, column

        user = table("user",
                column("id"),
                column("name"),
                column("description"),
        )

    The :class:`_expression.TableClause` construct serves as the base for
    the more commonly used :class:`_schema.Table` object, providing
    the usual set of :class:`_expression.FromClause` services including
    the ``.c.`` collection and statement generation methods.

    It does **not** provide all the additional schema-level services
    of :class:`_schema.Table`, including constraints, references to other
    tables, or support for :class:`_schema.MetaData`-level services.
    It's useful
    on its own as an ad-hoc construct used to generate quick SQL
    statements when a more fully fledged :class:`_schema.Table`
    is not on hand.

    """

    __visit_name__ = "table"

    _traverse_internals: _TraverseInternalsType = [
        (
            "columns",
            InternalTraversal.dp_fromclause_canonical_column_collection,
        ),
        ("name", InternalTraversal.dp_string),
        ("schema", InternalTraversal.dp_string),
    ]

    _is_table = True

    fullname: str

    implicit_returning = False
    """:class:`_expression.TableClause`
    doesn't support having a primary key or column
    -level defaults, so implicit returning doesn't apply."""

    @util.ro_memoized_property
    def _autoincrement_column(self) -> Optional[ColumnClause[Any]]:
        """No PK or default support so no autoincrement column."""
        return None

    def __init__(self, name: str, *columns: ColumnClause[Any], **kw: Any):
        super().__init__()
        self.name = name
        self._columns = DedupeColumnCollection()
        self.primary_key = ColumnSet()  # type: ignore
        self.foreign_keys = set()  # type: ignore
        for c in columns:
            self.append_column(c)

        schema = kw.pop("schema", None)
        if schema is not None:
            self.schema = schema
        if self.schema is not None:
            self.fullname = "%s.%s" % (self.schema, self.name)
        else:
            self.fullname = self.name
        if kw:
            raise exc.ArgumentError("Unsupported argument(s): %s" % list(kw))

    if TYPE_CHECKING:

        @util.ro_non_memoized_property
        def columns(
            self,
        ) -> ReadOnlyColumnCollection[str, ColumnClause[Any]]: ...

        @util.ro_non_memoized_property
        def c(self) -> ReadOnlyColumnCollection[str, ColumnClause[Any]]: ...

    def __str__(self) -> str:
        if self.schema is not None:
            return self.schema + "." + self.name
        else:
            return self.name

    def _refresh_for_new_column(self, column: ColumnElement[Any]) -> None:
        pass

    def _init_collections(self) -> None:
        pass

    @util.ro_memoized_property
    def description(self) -> str:
        return self.name

    def append_column(self, c: ColumnClause[Any]) -> None:
        existing = c.table
        if existing is not None and existing is not self:
            raise exc.ArgumentError(
                "column object '%s' already assigned to table '%s'"
                % (c.key, existing)
            )

        self._columns.add(c)
        c.table = self

    @util.preload_module("sqlalchemy.sql.dml")
    def insert(self) -> util.preloaded.sql_dml.Insert:
        """Generate an :class:`_sql.Insert` construct against this
        :class:`_expression.TableClause`.

        E.g.::

            table.insert().values(name='foo')

        See :func:`_expression.insert` for argument and usage information.

        """

        return util.preloaded.sql_dml.Insert(self)

    @util.preload_module("sqlalchemy.sql.dml")
    def update(self) -> Update:
        """Generate an :func:`_expression.update` construct against this
        :class:`_expression.TableClause`.

        E.g.::

            table.update().where(table.c.id==7).values(name='foo')

        See :func:`_expression.update` for argument and usage information.

        """
        return util.preloaded.sql_dml.Update(
            self,
        )

    @util.preload_module("sqlalchemy.sql.dml")
    def delete(self) -> Delete:
        """Generate a :func:`_expression.delete` construct against this
        :class:`_expression.TableClause`.

        E.g.::

            table.delete().where(table.c.id==7)

        See :func:`_expression.delete` for argument and usage information.

        """
        return util.preloaded.sql_dml.Delete(self)

    @util.ro_non_memoized_property
    def _from_objects(self) -> List[FromClause]:
        return [self]


ForUpdateParameter = Union["ForUpdateArg", None, bool, Dict[str, Any]]


class ForUpdateArg(ClauseElement):
    _traverse_internals: _TraverseInternalsType = [
        ("of", InternalTraversal.dp_clauseelement_list),
        ("nowait", InternalTraversal.dp_boolean),
        ("read", InternalTraversal.dp_boolean),
        ("skip_locked", InternalTraversal.dp_boolean),
    ]

    of: Optional[Sequence[ClauseElement]]
    nowait: bool
    read: bool
    skip_locked: bool

    @classmethod
    def _from_argument(
        cls, with_for_update: ForUpdateParameter
    ) -> Optional[ForUpdateArg]:
        if isinstance(with_for_update, ForUpdateArg):
            return with_for_update
        elif with_for_update in (None, False):
            return None
        elif with_for_update is True:
            return ForUpdateArg()
        else:
            return ForUpdateArg(**cast("Dict[str, Any]", with_for_update))

    def __eq__(self, other: Any) -> bool:
        return (
            isinstance(other, ForUpdateArg)
            and other.nowait == self.nowait
            and other.read == self.read
            and other.skip_locked == self.skip_locked
            and other.key_share == self.key_share
            and other.of is self.of
        )

    def __ne__(self, other: Any) -> bool:
        return not self.__eq__(other)

    def __hash__(self) -> int:
        return id(self)

    def __init__(
        self,
        *,
        nowait: bool = False,
        read: bool = False,
        of: Optional[_ForUpdateOfArgument] = None,
        skip_locked: bool = False,
        key_share: bool = False,
    ):
        """Represents arguments specified to
        :meth:`_expression.Select.for_update`.

        """

        self.nowait = nowait
        self.read = read
        self.skip_locked = skip_locked
        self.key_share = key_share
        if of is not None:
            self.of = [
                coercions.expect(roles.ColumnsClauseRole, elem)
                for elem in util.to_list(of)
            ]
        else:
            self.of = None


class Values(roles.InElementRole, Generative, LateralFromClause):
    """Represent a ``VALUES`` construct that can be used as a FROM element
    in a statement.

    The :class:`_expression.Values` object is created from the
    :func:`_expression.values` function.

    .. versionadded:: 1.4

    """

    __visit_name__ = "values"

    _data: Tuple[Sequence[Tuple[Any, ...]], ...] = ()

    _unnamed: bool
    _traverse_internals: _TraverseInternalsType = [
        ("_column_args", InternalTraversal.dp_clauseelement_list),
        ("_data", InternalTraversal.dp_dml_multi_values),
        ("name", InternalTraversal.dp_string),
        ("literal_binds", InternalTraversal.dp_boolean),
    ]

    def __init__(
        self,
        *columns: ColumnClause[Any],
        name: Optional[str] = None,
        literal_binds: bool = False,
    ):
        super().__init__()
        self._column_args = columns

        if name is None:
            self._unnamed = True
            self.name = _anonymous_label.safe_construct(id(self), "anon")
        else:
            self._unnamed = False
            self.name = name
        self.literal_binds = literal_binds
        self.named_with_column = not self._unnamed

    @property
    def _column_types(self) -> List[TypeEngine[Any]]:
        return [col.type for col in self._column_args]

    @_generative
    def alias(self, name: Optional[str] = None, flat: bool = False) -> Self:
        """Return a new :class:`_expression.Values`
        construct that is a copy of this
        one with the given name.

        This method is a VALUES-specific specialization of the
        :meth:`_expression.FromClause.alias` method.

        .. seealso::

            :ref:`tutorial_using_aliases`

            :func:`_expression.alias`

        """
        non_none_name: str

        if name is None:
            non_none_name = _anonymous_label.safe_construct(id(self), "anon")
        else:
            non_none_name = name

        self.name = non_none_name
        self.named_with_column = True
        self._unnamed = False
        return self

    @_generative
    def lateral(self, name: Optional[str] = None) -> LateralFromClause:
        """Return a new :class:`_expression.Values` with the lateral flag set,
        so that
        it renders as LATERAL.

        .. seealso::

            :func:`_expression.lateral`

        """
        non_none_name: str

        if name is None:
            non_none_name = self.name
        else:
            non_none_name = name

        self._is_lateral = True
        self.name = non_none_name
        self._unnamed = False
        return self

    @_generative
    def data(self, values: Sequence[Tuple[Any, ...]]) -> Self:
        """Return a new :class:`_expression.Values` construct,
        adding the given data to the data list.

        E.g.::

            my_values = my_values.data([(1, 'value 1'), (2, 'value2')])

        :param values: a sequence (i.e. list) of tuples that map to the
         column expressions given in the :class:`_expression.Values`
         constructor.

        """

        self._data += (values,)
        return self

    def scalar_values(self) -> ScalarValues:
        """Returns a scalar ``VALUES`` construct that can be used as a
        COLUMN element in a statement.

        .. versionadded:: 2.0.0b4

        """
        return ScalarValues(self._column_args, self._data, self.literal_binds)

    def _populate_column_collection(self) -> None:
        for c in self._column_args:
            if c.table is not None and c.table is not self:
                _, c = c._make_proxy(self)
            else:
                # if the column was used in other contexts, ensure
                # no memoizations of other FROM clauses.
                # see test_values.py -> test_auto_proxy_select_direct_col
                c._reset_memoizations()
            self._columns.add(c)
            c.table = self

    @util.ro_non_memoized_property
    def _from_objects(self) -> List[FromClause]:
        return [self]


class ScalarValues(roles.InElementRole, GroupedElement, ColumnElement[Any]):
    """Represent a scalar ``VALUES`` construct that can be used as a
    COLUMN element in a statement.

    The :class:`_expression.ScalarValues` object is created from the
    :meth:`_expression.Values.scalar_values` method. It's also
    automatically generated when a :class:`_expression.Values` is used in
    an ``IN`` or ``NOT IN`` condition.

    .. versionadded:: 2.0.0b4

    """

    __visit_name__ = "scalar_values"

    _traverse_internals: _TraverseInternalsType = [
        ("_column_args", InternalTraversal.dp_clauseelement_list),
        ("_data", InternalTraversal.dp_dml_multi_values),
        ("literal_binds", InternalTraversal.dp_boolean),
    ]

    def __init__(
        self,
        columns: Sequence[ColumnClause[Any]],
        data: Tuple[Sequence[Tuple[Any, ...]], ...],
        literal_binds: bool,
    ):
        super().__init__()
        self._column_args = columns
        self._data = data
        self.literal_binds = literal_binds

    @property
    def _column_types(self) -> List[TypeEngine[Any]]:
        return [col.type for col in self._column_args]

    def __clause_element__(self) -> ScalarValues:
        return self


class SelectBase(
    roles.SelectStatementRole,
    roles.DMLSelectRole,
    roles.CompoundElementRole,
    roles.InElementRole,
    HasCTE,
    SupportsCloneAnnotations,
    Selectable,
):
    """Base class for SELECT statements.


    This includes :class:`_expression.Select`,
    :class:`_expression.CompoundSelect` and
    :class:`_expression.TextualSelect`.


    """

    _is_select_base = True
    is_select = True

    _label_style: SelectLabelStyle = LABEL_STYLE_NONE

    def _refresh_for_new_column(self, column: ColumnElement[Any]) -> None:
        self._reset_memoizations()

    @util.ro_non_memoized_property
    def selected_columns(
        self,
    ) -> ColumnCollection[str, ColumnElement[Any]]:
        """A :class:`_expression.ColumnCollection`
        representing the columns that
        this SELECT statement or similar construct returns in its result set.

        This collection differs from the :attr:`_expression.FromClause.columns`
        collection of a :class:`_expression.FromClause` in that the columns
        within this collection cannot be directly nested inside another SELECT
        statement; a subquery must be applied first which provides for the
        necessary parenthesization required by SQL.

        .. note::

            The :attr:`_sql.SelectBase.selected_columns` collection does not
            include expressions established in the columns clause using the
            :func:`_sql.text` construct; these are silently omitted from the
            collection. To use plain textual column expressions inside of a
            :class:`_sql.Select` construct, use the :func:`_sql.literal_column`
            construct.

        .. seealso::

            :attr:`_sql.Select.selected_columns`

        .. versionadded:: 1.4

        """
        raise NotImplementedError()

    def _generate_fromclause_column_proxies(
        self,
        subquery: FromClause,
        *,
        proxy_compound_columns: Optional[
            Iterable[Sequence[ColumnElement[Any]]]
        ] = None,
    ) -> None:
        raise NotImplementedError()

    @util.ro_non_memoized_property
    def _all_selected_columns(self) -> _SelectIterable:
        """A sequence of expressions that correspond to what is rendered
        in the columns clause, including :class:`_sql.TextClause`
        constructs.

        .. versionadded:: 1.4.12

        .. seealso::

            :attr:`_sql.SelectBase.exported_columns`

        """
        raise NotImplementedError()

    @property
    def exported_columns(
        self,
    ) -> ReadOnlyColumnCollection[str, ColumnElement[Any]]:
        """A :class:`_expression.ColumnCollection`
        that represents the "exported"
        columns of this :class:`_expression.Selectable`, not including
        :class:`_sql.TextClause` constructs.

        The "exported" columns for a :class:`_expression.SelectBase`
        object are synonymous
        with the :attr:`_expression.SelectBase.selected_columns` collection.

        .. versionadded:: 1.4

        .. seealso::

            :attr:`_expression.Select.exported_columns`

            :attr:`_expression.Selectable.exported_columns`

            :attr:`_expression.FromClause.exported_columns`


        """
        return self.selected_columns.as_readonly()

    @property
    @util.deprecated(
        "1.4",
        "The :attr:`_expression.SelectBase.c` and "
        ":attr:`_expression.SelectBase.columns` attributes "
        "are deprecated and will be removed in a future release; these "
        "attributes implicitly create a subquery that should be explicit.  "
        "Please call :meth:`_expression.SelectBase.subquery` "
        "first in order to create "
        "a subquery, which then contains this attribute.  To access the "
        "columns that this SELECT object SELECTs "
        "from, use the :attr:`_expression.SelectBase.selected_columns` "
        "attribute.",
    )
    def c(self) -> ReadOnlyColumnCollection[str, KeyedColumnElement[Any]]:
        return self._implicit_subquery.columns

    @property
    def columns(
        self,
    ) -> ReadOnlyColumnCollection[str, KeyedColumnElement[Any]]:
        return self.c

    def get_label_style(self) -> SelectLabelStyle:
        """
        Retrieve the current label style.

        Implemented by subclasses.

        """
        raise NotImplementedError()

    def set_label_style(self, style: SelectLabelStyle) -> Self:
        """Return a new selectable with the specified label style.

        Implemented by subclasses.

        """

        raise NotImplementedError()

    @util.deprecated(
        "1.4",
        "The :meth:`_expression.SelectBase.select` method is deprecated "
        "and will be removed in a future release; this method implicitly "
        "creates a subquery that should be explicit.  "
        "Please call :meth:`_expression.SelectBase.subquery` "
        "first in order to create "
        "a subquery, which then can be selected.",
    )
    def select(self, *arg: Any, **kw: Any) -> Select[Any]:
        return self._implicit_subquery.select(*arg, **kw)

    @HasMemoized.memoized_attribute
    def _implicit_subquery(self) -> Subquery:
        return self.subquery()

    def _scalar_type(self) -> TypeEngine[Any]:
        raise NotImplementedError()

    @util.deprecated(
        "1.4",
        "The :meth:`_expression.SelectBase.as_scalar` "
        "method is deprecated and will be "
        "removed in a future release.  Please refer to "
        ":meth:`_expression.SelectBase.scalar_subquery`.",
    )
    def as_scalar(self) -> ScalarSelect[Any]:
        return self.scalar_subquery()

    def exists(self) -> Exists:
        """Return an :class:`_sql.Exists` representation of this selectable,
        which can be used as a column expression.

        The returned object is an instance of :class:`_sql.Exists`.

        .. seealso::

            :func:`_sql.exists`

            :ref:`tutorial_exists` - in the :term:`2.0 style` tutorial.

        .. versionadded:: 1.4

        """
        return Exists(self)

    def scalar_subquery(self) -> ScalarSelect[Any]:
        """Return a 'scalar' representation of this selectable, which can be
        used as a column expression.

        The returned object is an instance of :class:`_sql.ScalarSelect`.

        Typically, a select statement which has only one column in its columns
        clause is eligible to be used as a scalar expression.  The scalar
        subquery can then be used in the WHERE clause or columns clause of
        an enclosing SELECT.

        Note that the scalar subquery differentiates from the FROM-level
        subquery that can be produced using the
        :meth:`_expression.SelectBase.subquery`
        method.

        .. versionchanged: 1.4 - the ``.as_scalar()`` method was renamed to
           :meth:`_expression.SelectBase.scalar_subquery`.

        .. seealso::

            :ref:`tutorial_scalar_subquery` - in the 2.0 tutorial

        """
        if self._label_style is not LABEL_STYLE_NONE:
            self = self.set_label_style(LABEL_STYLE_NONE)

        return ScalarSelect(self)

    def label(self, name: Optional[str]) -> Label[Any]:
        """Return a 'scalar' representation of this selectable, embedded as a
        subquery with a label.

        .. seealso::

            :meth:`_expression.SelectBase.scalar_subquery`.

        """
        return self.scalar_subquery().label(name)

    def lateral(self, name: Optional[str] = None) -> LateralFromClause:
        """Return a LATERAL alias of this :class:`_expression.Selectable`.

        The return value is the :class:`_expression.Lateral` construct also
        provided by the top-level :func:`_expression.lateral` function.

        .. seealso::

            :ref:`tutorial_lateral_correlation` -  overview of usage.

        """
        return Lateral._factory(self, name)

    def subquery(self, name: Optional[str] = None) -> Subquery:
        """Return a subquery of this :class:`_expression.SelectBase`.

        A subquery is from a SQL perspective a parenthesized, named
        construct that can be placed in the FROM clause of another
        SELECT statement.

        Given a SELECT statement such as::

            stmt = select(table.c.id, table.c.name)

        The above statement might look like::

            SELECT table.id, table.name FROM table

        The subquery form by itself renders the same way, however when
        embedded into the FROM clause of another SELECT statement, it becomes
        a named sub-element::

            subq = stmt.subquery()
            new_stmt = select(subq)

        The above renders as::

            SELECT anon_1.id, anon_1.name
            FROM (SELECT table.id, table.name FROM table) AS anon_1

        Historically, :meth:`_expression.SelectBase.subquery`
        is equivalent to calling
        the :meth:`_expression.FromClause.alias`
        method on a FROM object; however,
        as a :class:`_expression.SelectBase`
        object is not directly  FROM object,
        the :meth:`_expression.SelectBase.subquery`
        method provides clearer semantics.

        .. versionadded:: 1.4

        """

        return Subquery._construct(
            self._ensure_disambiguated_names(), name=name
        )

    def _ensure_disambiguated_names(self) -> Self:
        """Ensure that the names generated by this selectbase will be
        disambiguated in some way, if possible.

        """

        raise NotImplementedError()

    def alias(
        self, name: Optional[str] = None, flat: bool = False
    ) -> Subquery:
        """Return a named subquery against this
        :class:`_expression.SelectBase`.

        For a :class:`_expression.SelectBase` (as opposed to a
        :class:`_expression.FromClause`),
        this returns a :class:`.Subquery` object which behaves mostly the
        same as the :class:`_expression.Alias` object that is used with a
        :class:`_expression.FromClause`.

        .. versionchanged:: 1.4 The :meth:`_expression.SelectBase.alias`
           method is now
           a synonym for the :meth:`_expression.SelectBase.subquery` method.

        """
        return self.subquery(name=name)


_SB = TypeVar("_SB", bound=SelectBase)


class SelectStatementGrouping(GroupedElement, SelectBase, Generic[_SB]):
    """Represent a grouping of a :class:`_expression.SelectBase`.

    This differs from :class:`.Subquery` in that we are still
    an "inner" SELECT statement, this is strictly for grouping inside of
    compound selects.

    """

    __visit_name__ = "select_statement_grouping"
    _traverse_internals: _TraverseInternalsType = [
        ("element", InternalTraversal.dp_clauseelement)
    ]

    _is_select_container = True

    element: _SB

    def __init__(self, element: _SB) -> None:
        self.element = cast(
            _SB, coercions.expect(roles.SelectStatementRole, element)
        )

    def _ensure_disambiguated_names(self) -> SelectStatementGrouping[_SB]:
        new_element = self.element._ensure_disambiguated_names()
        if new_element is not self.element:
            return SelectStatementGrouping(new_element)
        else:
            return self

    def get_label_style(self) -> SelectLabelStyle:
        return self.element.get_label_style()

    def set_label_style(
        self, label_style: SelectLabelStyle
    ) -> SelectStatementGrouping[_SB]:
        return SelectStatementGrouping(
            self.element.set_label_style(label_style)
        )

    @property
    def select_statement(self) -> _SB:
        return self.element

    def self_group(self, against: Optional[OperatorType] = None) -> Self:
        ...
        return self

    if TYPE_CHECKING:

        def _ungroup(self) -> _SB: ...

    # def _generate_columns_plus_names(
    #    self, anon_for_dupe_key: bool
    # ) -> List[Tuple[str, str, str, ColumnElement[Any], bool]]:
    #    return self.element._generate_columns_plus_names(anon_for_dupe_key)

    def _generate_fromclause_column_proxies(
        self,
        subquery: FromClause,
        *,
        proxy_compound_columns: Optional[
            Iterable[Sequence[ColumnElement[Any]]]
        ] = None,
    ) -> None:
        self.element._generate_fromclause_column_proxies(
            subquery, proxy_compound_columns=proxy_compound_columns
        )

    @util.ro_non_memoized_property
    def _all_selected_columns(self) -> _SelectIterable:
        return self.element._all_selected_columns

    @util.ro_non_memoized_property
    def selected_columns(self) -> ColumnCollection[str, ColumnElement[Any]]:
        """A :class:`_expression.ColumnCollection`
        representing the columns that
        the embedded SELECT statement returns in its result set, not including
        :class:`_sql.TextClause` constructs.

        .. versionadded:: 1.4

        .. seealso::

            :attr:`_sql.Select.selected_columns`

        """
        return self.element.selected_columns

    @util.ro_non_memoized_property
    def _from_objects(self) -> List[FromClause]:
        return self.element._from_objects


class GenerativeSelect(SelectBase, Generative):
    """Base class for SELECT statements where additional elements can be
    added.

    This serves as the base for :class:`_expression.Select` and
    :class:`_expression.CompoundSelect`
    where elements such as ORDER BY, GROUP BY can be added and column
    rendering can be controlled.  Compare to
    :class:`_expression.TextualSelect`, which,
    while it subclasses :class:`_expression.SelectBase`
    and is also a SELECT construct,
    represents a fixed textual string which cannot be altered at this level,
    only wrapped as a subquery.

    """

    _order_by_clauses: Tuple[ColumnElement[Any], ...] = ()
    _group_by_clauses: Tuple[ColumnElement[Any], ...] = ()
    _limit_clause: Optional[ColumnElement[Any]] = None
    _offset_clause: Optional[ColumnElement[Any]] = None
    _fetch_clause: Optional[ColumnElement[Any]] = None
    _fetch_clause_options: Optional[Dict[str, bool]] = None
    _for_update_arg: Optional[ForUpdateArg] = None

    def __init__(self, _label_style: SelectLabelStyle = LABEL_STYLE_DEFAULT):
        self._label_style = _label_style

    @_generative
    def with_for_update(
        self,
        *,
        nowait: bool = False,
        read: bool = False,
        of: Optional[_ForUpdateOfArgument] = None,
        skip_locked: bool = False,
        key_share: bool = False,
    ) -> Self:
        """Specify a ``FOR UPDATE`` clause for this
        :class:`_expression.GenerativeSelect`.

        E.g.::

            stmt = select(table).with_for_update(nowait=True)

        On a database like PostgreSQL or Oracle, the above would render a
        statement like::

            SELECT table.a, table.b FROM table FOR UPDATE NOWAIT

        on other backends, the ``nowait`` option is ignored and instead
        would produce::

            SELECT table.a, table.b FROM table FOR UPDATE

        When called with no arguments, the statement will render with
        the suffix ``FOR UPDATE``.   Additional arguments can then be
        provided which allow for common database-specific
        variants.

        :param nowait: boolean; will render ``FOR UPDATE NOWAIT`` on Oracle
         and PostgreSQL dialects.

        :param read: boolean; will render ``LOCK IN SHARE MODE`` on MySQL,
         ``FOR SHARE`` on PostgreSQL.  On PostgreSQL, when combined with
         ``nowait``, will render ``FOR SHARE NOWAIT``.

        :param of: SQL expression or list of SQL expression elements,
         (typically :class:`_schema.Column` objects or a compatible expression,
         for some backends may also be a table expression) which will render
         into a ``FOR UPDATE OF`` clause; supported by PostgreSQL, Oracle, some
         MySQL versions and possibly others. May render as a table or as a
         column depending on backend.

        :param skip_locked: boolean, will render ``FOR UPDATE SKIP LOCKED``
         on Oracle and PostgreSQL dialects or ``FOR SHARE SKIP LOCKED`` if
         ``read=True`` is also specified.

        :param key_share: boolean, will render ``FOR NO KEY UPDATE``,
         or if combined with ``read=True`` will render ``FOR KEY SHARE``,
         on the PostgreSQL dialect.

        """
        self._for_update_arg = ForUpdateArg(
            nowait=nowait,
            read=read,
            of=of,
            skip_locked=skip_locked,
            key_share=key_share,
        )
        return self

    def get_label_style(self) -> SelectLabelStyle:
        """
        Retrieve the current label style.

        .. versionadded:: 1.4

        """
        return self._label_style

    def set_label_style(self, style: SelectLabelStyle) -> Self:
        """Return a new selectable with the specified label style.

        There are three "label styles" available,
        :attr:`_sql.SelectLabelStyle.LABEL_STYLE_DISAMBIGUATE_ONLY`,
        :attr:`_sql.SelectLabelStyle.LABEL_STYLE_TABLENAME_PLUS_COL`, and
        :attr:`_sql.SelectLabelStyle.LABEL_STYLE_NONE`.   The default style is
        :attr:`_sql.SelectLabelStyle.LABEL_STYLE_TABLENAME_PLUS_COL`.

        In modern SQLAlchemy, there is not generally a need to change the
        labeling style, as per-expression labels are more effectively used by
        making use of the :meth:`_sql.ColumnElement.label` method. In past
        versions, :data:`_sql.LABEL_STYLE_TABLENAME_PLUS_COL` was used to
        disambiguate same-named columns from different tables, aliases, or
        subqueries; the newer :data:`_sql.LABEL_STYLE_DISAMBIGUATE_ONLY` now
        applies labels only to names that conflict with an existing name so
        that the impact of this labeling is minimal.

        The rationale for disambiguation is mostly so that all column
        expressions are available from a given :attr:`_sql.FromClause.c`
        collection when a subquery is created.

        .. versionadded:: 1.4 - the
            :meth:`_sql.GenerativeSelect.set_label_style` method replaces the
            previous combination of ``.apply_labels()``, ``.with_labels()`` and
            ``use_labels=True`` methods and/or parameters.

        .. seealso::

            :data:`_sql.LABEL_STYLE_DISAMBIGUATE_ONLY`

            :data:`_sql.LABEL_STYLE_TABLENAME_PLUS_COL`

            :data:`_sql.LABEL_STYLE_NONE`

            :data:`_sql.LABEL_STYLE_DEFAULT`

        """
        if self._label_style is not style:
            self = self._generate()
            self._label_style = style
        return self

    @property
    def _group_by_clause(self) -> ClauseList:
        """ClauseList access to group_by_clauses for legacy dialects"""
        return ClauseList._construct_raw(
            operators.comma_op, self._group_by_clauses
        )

    @property
    def _order_by_clause(self) -> ClauseList:
        """ClauseList access to order_by_clauses for legacy dialects"""
        return ClauseList._construct_raw(
            operators.comma_op, self._order_by_clauses
        )

    def _offset_or_limit_clause(
        self,
        element: _LimitOffsetType,
        name: Optional[str] = None,
        type_: Optional[_TypeEngineArgument[int]] = None,
    ) -> ColumnElement[Any]:
        """Convert the given value to an "offset or limit" clause.

        This handles incoming integers and converts to an expression; if
        an expression is already given, it is passed through.

        """
        return coercions.expect(
            roles.LimitOffsetRole, element, name=name, type_=type_
        )

    @overload
    def _offset_or_limit_clause_asint(
        self, clause: ColumnElement[Any], attrname: str
    ) -> NoReturn: ...

    @overload
    def _offset_or_limit_clause_asint(
        self, clause: Optional[_OffsetLimitParam], attrname: str
    ) -> Optional[int]: ...

    def _offset_or_limit_clause_asint(
        self, clause: Optional[ColumnElement[Any]], attrname: str
    ) -> Union[NoReturn, Optional[int]]:
        """Convert the "offset or limit" clause of a select construct to an
        integer.

        This is only possible if the value is stored as a simple bound
        parameter. Otherwise, a compilation error is raised.

        """
        if clause is None:
            return None
        try:
            value = clause._limit_offset_value
        except AttributeError as err:
            raise exc.CompileError(
                "This SELECT structure does not use a simple "
                "integer value for %s" % attrname
            ) from err
        else:
            return util.asint(value)

    @property
    def _limit(self) -> Optional[int]:
        """Get an integer value for the limit.  This should only be used
        by code that cannot support a limit as a BindParameter or
        other custom clause as it will throw an exception if the limit
        isn't currently set to an integer.

        """
        return self._offset_or_limit_clause_asint(self._limit_clause, "limit")

    def _simple_int_clause(self, clause: ClauseElement) -> bool:
        """True if the clause is a simple integer, False
        if it is not present or is a SQL expression.
        """
        return isinstance(clause, _OffsetLimitParam)

    @property
    def _offset(self) -> Optional[int]:
        """Get an integer value for the offset.  This should only be used
        by code that cannot support an offset as a BindParameter or
        other custom clause as it will throw an exception if the
        offset isn't currently set to an integer.

        """
        return self._offset_or_limit_clause_asint(
            self._offset_clause, "offset"
        )

    @property
    def _has_row_limiting_clause(self) -> bool:
        return (
            self._limit_clause is not None
            or self._offset_clause is not None
            or self._fetch_clause is not None
        )

    @_generative
    def limit(self, limit: _LimitOffsetType) -> Self:
        """Return a new selectable with the given LIMIT criterion
        applied.

        This is a numerical value which usually renders as a ``LIMIT``
        expression in the resulting select.  Backends that don't
        support ``LIMIT`` will attempt to provide similar
        functionality.

        .. note::

           The :meth:`_sql.GenerativeSelect.limit` method will replace
           any clause applied with :meth:`_sql.GenerativeSelect.fetch`.

        :param limit: an integer LIMIT parameter, or a SQL expression
         that provides an integer result. Pass ``None`` to reset it.

        .. seealso::

           :meth:`_sql.GenerativeSelect.fetch`

           :meth:`_sql.GenerativeSelect.offset`

        """

        self._fetch_clause = self._fetch_clause_options = None
        self._limit_clause = self._offset_or_limit_clause(limit)
        return self

    @_generative
    def fetch(
        self,
        count: _LimitOffsetType,
        with_ties: bool = False,
        percent: bool = False,
    ) -> Self:
        """Return a new selectable with the given FETCH FIRST criterion
        applied.

        This is a numeric value which usually renders as
        ``FETCH {FIRST | NEXT} [ count ] {ROW | ROWS} {ONLY | WITH TIES}``
        expression in the resulting select. This functionality is
        is currently implemented for Oracle, PostgreSQL, MSSQL.

        Use :meth:`_sql.GenerativeSelect.offset` to specify the offset.

        .. note::

           The :meth:`_sql.GenerativeSelect.fetch` method will replace
           any clause applied with :meth:`_sql.GenerativeSelect.limit`.

        .. versionadded:: 1.4

        :param count: an integer COUNT parameter, or a SQL expression
         that provides an integer result. When ``percent=True`` this will
         represent the percentage of rows to return, not the absolute value.
         Pass ``None`` to reset it.

        :param with_ties: When ``True``, the WITH TIES option is used
         to return any additional rows that tie for the last place in the
         result set according to the ``ORDER BY`` clause. The
         ``ORDER BY`` may be mandatory in this case. Defaults to ``False``

        :param percent: When ``True``, ``count`` represents the percentage
         of the total number of selected rows to return. Defaults to ``False``

        .. seealso::

           :meth:`_sql.GenerativeSelect.limit`

           :meth:`_sql.GenerativeSelect.offset`

        """

        self._limit_clause = None
        if count is None:
            self._fetch_clause = self._fetch_clause_options = None
        else:
            self._fetch_clause = self._offset_or_limit_clause(count)
            self._fetch_clause_options = {
                "with_ties": with_ties,
                "percent": percent,
            }
        return self

    @_generative
    def offset(self, offset: _LimitOffsetType) -> Self:
        """Return a new selectable with the given OFFSET criterion
        applied.


        This is a numeric value which usually renders as an ``OFFSET``
        expression in the resulting select.  Backends that don't
        support ``OFFSET`` will attempt to provide similar
        functionality.

        :param offset: an integer OFFSET parameter, or a SQL expression
         that provides an integer result. Pass ``None`` to reset it.

        .. seealso::

           :meth:`_sql.GenerativeSelect.limit`

           :meth:`_sql.GenerativeSelect.fetch`

        """

        self._offset_clause = self._offset_or_limit_clause(offset)
        return self

    @_generative
    @util.preload_module("sqlalchemy.sql.util")
    def slice(
        self,
        start: int,
        stop: int,
    ) -> Self:
        """Apply LIMIT / OFFSET to this statement based on a slice.

        The start and stop indices behave like the argument to Python's
        built-in :func:`range` function. This method provides an
        alternative to using ``LIMIT``/``OFFSET`` to get a slice of the
        query.

        For example, ::

            stmt = select(User).order_by(User).id.slice(1, 3)

        renders as

        .. sourcecode:: sql

           SELECT users.id AS users_id,
                  users.name AS users_name
           FROM users ORDER BY users.id
           LIMIT ? OFFSET ?
           (2, 1)

        .. note::

           The :meth:`_sql.GenerativeSelect.slice` method will replace
           any clause applied with :meth:`_sql.GenerativeSelect.fetch`.

        .. versionadded:: 1.4  Added the :meth:`_sql.GenerativeSelect.slice`
           method generalized from the ORM.

        .. seealso::

           :meth:`_sql.GenerativeSelect.limit`

           :meth:`_sql.GenerativeSelect.offset`

           :meth:`_sql.GenerativeSelect.fetch`

        """
        sql_util = util.preloaded.sql_util
        self._fetch_clause = self._fetch_clause_options = None
        self._limit_clause, self._offset_clause = sql_util._make_slice(
            self._limit_clause, self._offset_clause, start, stop
        )
        return self

    @_generative
    def order_by(
        self,
        __first: Union[
            Literal[None, _NoArg.NO_ARG],
            _ColumnExpressionOrStrLabelArgument[Any],
        ] = _NoArg.NO_ARG,
        *clauses: _ColumnExpressionOrStrLabelArgument[Any],
    ) -> Self:
        r"""Return a new selectable with the given list of ORDER BY
        criteria applied.

        e.g.::

            stmt = select(table).order_by(table.c.id, table.c.name)

        Calling this method multiple times is equivalent to calling it once
        with all the clauses concatenated. All existing ORDER BY criteria may
        be cancelled by passing ``None`` by itself.  New ORDER BY criteria may
        then be added by invoking :meth:`_orm.Query.order_by` again, e.g.::

            # will erase all ORDER BY and ORDER BY new_col alone
            stmt = stmt.order_by(None).order_by(new_col)

        :param \*clauses: a series of :class:`_expression.ColumnElement`
         constructs
         which will be used to generate an ORDER BY clause.

        .. seealso::

            :ref:`tutorial_order_by` - in the :ref:`unified_tutorial`

            :ref:`tutorial_order_by_label` - in the :ref:`unified_tutorial`

        """

        if not clauses and __first is None:
            self._order_by_clauses = ()
        elif __first is not _NoArg.NO_ARG:
            self._order_by_clauses += tuple(
                coercions.expect(
                    roles.OrderByRole, clause, apply_propagate_attrs=self
                )
                for clause in (__first,) + clauses
            )
        return self

    @_generative
    def group_by(
        self,
        __first: Union[
            Literal[None, _NoArg.NO_ARG],
            _ColumnExpressionOrStrLabelArgument[Any],
        ] = _NoArg.NO_ARG,
        *clauses: _ColumnExpressionOrStrLabelArgument[Any],
    ) -> Self:
        r"""Return a new selectable with the given list of GROUP BY
        criterion applied.

        All existing GROUP BY settings can be suppressed by passing ``None``.

        e.g.::

            stmt = select(table.c.name, func.max(table.c.stat)).\
            group_by(table.c.name)

        :param \*clauses: a series of :class:`_expression.ColumnElement`
         constructs
         which will be used to generate an GROUP BY clause.

        .. seealso::

            :ref:`tutorial_group_by_w_aggregates` - in the
            :ref:`unified_tutorial`

            :ref:`tutorial_order_by_label` - in the :ref:`unified_tutorial`

        """

        if not clauses and __first is None:
            self._group_by_clauses = ()
        elif __first is not _NoArg.NO_ARG:
            self._group_by_clauses += tuple(
                coercions.expect(
                    roles.GroupByRole, clause, apply_propagate_attrs=self
                )
                for clause in (__first,) + clauses
            )
        return self


@CompileState.plugin_for("default", "compound_select")
class CompoundSelectState(CompileState):
    @util.memoized_property
    def _label_resolve_dict(
        self,
    ) -> Tuple[
        Dict[str, ColumnElement[Any]],
        Dict[str, ColumnElement[Any]],
        Dict[str, ColumnElement[Any]],
    ]:
        # TODO: this is hacky and slow
        hacky_subquery = self.statement.subquery()
        hacky_subquery.named_with_column = False
        d = {c.key: c for c in hacky_subquery.c}
        return d, d, d


class _CompoundSelectKeyword(Enum):
    UNION = "UNION"
    UNION_ALL = "UNION ALL"
    EXCEPT = "EXCEPT"
    EXCEPT_ALL = "EXCEPT ALL"
    INTERSECT = "INTERSECT"
    INTERSECT_ALL = "INTERSECT ALL"


class CompoundSelect(HasCompileState, GenerativeSelect, ExecutableReturnsRows):
    """Forms the basis of ``UNION``, ``UNION ALL``, and other
    SELECT-based set operations.


    .. seealso::

        :func:`_expression.union`

        :func:`_expression.union_all`

        :func:`_expression.intersect`

        :func:`_expression.intersect_all`

        :func:`_expression.except`

        :func:`_expression.except_all`

    """

    __visit_name__ = "compound_select"

    _traverse_internals: _TraverseInternalsType = [
        ("selects", InternalTraversal.dp_clauseelement_list),
        ("_limit_clause", InternalTraversal.dp_clauseelement),
        ("_offset_clause", InternalTraversal.dp_clauseelement),
        ("_fetch_clause", InternalTraversal.dp_clauseelement),
        ("_fetch_clause_options", InternalTraversal.dp_plain_dict),
        ("_order_by_clauses", InternalTraversal.dp_clauseelement_list),
        ("_group_by_clauses", InternalTraversal.dp_clauseelement_list),
        ("_for_update_arg", InternalTraversal.dp_clauseelement),
        ("keyword", InternalTraversal.dp_string),
    ] + SupportsCloneAnnotations._clone_annotations_traverse_internals

    selects: List[SelectBase]

    _is_from_container = True
    _auto_correlate = False

    def __init__(
        self,
        keyword: _CompoundSelectKeyword,
        *selects: _SelectStatementForCompoundArgument,
    ):
        self.keyword = keyword
        self.selects = [
            coercions.expect(
                roles.CompoundElementRole, s, apply_propagate_attrs=self
            ).self_group(against=self)
            for s in selects
        ]

        GenerativeSelect.__init__(self)

    @classmethod
    def _create_union(
        cls, *selects: _SelectStatementForCompoundArgument
    ) -> CompoundSelect:
        return CompoundSelect(_CompoundSelectKeyword.UNION, *selects)

    @classmethod
    def _create_union_all(
        cls, *selects: _SelectStatementForCompoundArgument
    ) -> CompoundSelect:
        return CompoundSelect(_CompoundSelectKeyword.UNION_ALL, *selects)

    @classmethod
    def _create_except(
        cls, *selects: _SelectStatementForCompoundArgument
    ) -> CompoundSelect:
        return CompoundSelect(_CompoundSelectKeyword.EXCEPT, *selects)

    @classmethod
    def _create_except_all(
        cls, *selects: _SelectStatementForCompoundArgument
    ) -> CompoundSelect:
        return CompoundSelect(_CompoundSelectKeyword.EXCEPT_ALL, *selects)

    @classmethod
    def _create_intersect(
        cls, *selects: _SelectStatementForCompoundArgument
    ) -> CompoundSelect:
        return CompoundSelect(_CompoundSelectKeyword.INTERSECT, *selects)

    @classmethod
    def _create_intersect_all(
        cls, *selects: _SelectStatementForCompoundArgument
    ) -> CompoundSelect:
        return CompoundSelect(_CompoundSelectKeyword.INTERSECT_ALL, *selects)

    def _scalar_type(self) -> TypeEngine[Any]:
        return self.selects[0]._scalar_type()

    def self_group(
        self, against: Optional[OperatorType] = None
    ) -> GroupedElement:
        return SelectStatementGrouping(self)

    def is_derived_from(self, fromclause: Optional[FromClause]) -> bool:
        for s in self.selects:
            if s.is_derived_from(fromclause):
                return True
        return False

    def set_label_style(self, style: SelectLabelStyle) -> CompoundSelect:
        if self._label_style is not style:
            self = self._generate()
            select_0 = self.selects[0].set_label_style(style)
            self.selects = [select_0] + self.selects[1:]

        return self

    def _ensure_disambiguated_names(self) -> CompoundSelect:
        new_select = self.selects[0]._ensure_disambiguated_names()
        if new_select is not self.selects[0]:
            self = self._generate()
            self.selects = [new_select] + self.selects[1:]

        return self

    def _generate_fromclause_column_proxies(
        self,
        subquery: FromClause,
        *,
        proxy_compound_columns: Optional[
            Iterable[Sequence[ColumnElement[Any]]]
        ] = None,
    ) -> None:
        # this is a slightly hacky thing - the union exports a
        # column that resembles just that of the *first* selectable.
        # to get at a "composite" column, particularly foreign keys,
        # you have to dig through the proxies collection which we
        # generate below.
        select_0 = self.selects[0]

        if self._label_style is not LABEL_STYLE_DEFAULT:
            select_0 = select_0.set_label_style(self._label_style)

        # hand-construct the "_proxies" collection to include all
        # derived columns place a 'weight' annotation corresponding
        # to how low in the list of select()s the column occurs, so
        # that the corresponding_column() operation can resolve
        # conflicts
        extra_col_iterator = zip(
            *[
                [
                    c._annotate(dd)
                    for c in stmt._all_selected_columns
                    if is_column_element(c)
                ]
                for dd, stmt in [
                    ({"weight": i + 1}, stmt)
                    for i, stmt in enumerate(self.selects)
                ]
            ]
        )

        # the incoming proxy_compound_columns can be present also if this is
        # a compound embedded in a compound.  it's probably more appropriate
        # that we generate new weights local to this nested compound, though
        # i haven't tried to think what it means for compound nested in
        # compound
        select_0._generate_fromclause_column_proxies(
            subquery, proxy_compound_columns=extra_col_iterator
        )

    def _refresh_for_new_column(self, column: ColumnElement[Any]) -> None:
        super()._refresh_for_new_column(column)
        for select in self.selects:
            select._refresh_for_new_column(column)

    @util.ro_non_memoized_property
    def _all_selected_columns(self) -> _SelectIterable:
        return self.selects[0]._all_selected_columns

    @util.ro_non_memoized_property
    def selected_columns(
        self,
    ) -> ColumnCollection[str, ColumnElement[Any]]:
        """A :class:`_expression.ColumnCollection`
        representing the columns that
        this SELECT statement or similar construct returns in its result set,
        not including :class:`_sql.TextClause` constructs.

        For a :class:`_expression.CompoundSelect`, the
        :attr:`_expression.CompoundSelect.selected_columns`
        attribute returns the selected
        columns of the first SELECT statement contained within the series of
        statements within the set operation.

        .. seealso::

            :attr:`_sql.Select.selected_columns`

        .. versionadded:: 1.4

        """
        return self.selects[0].selected_columns


# backwards compat
for elem in _CompoundSelectKeyword:
    setattr(CompoundSelect, elem.name, elem)


@CompileState.plugin_for("default", "select")
class SelectState(util.MemoizedSlots, CompileState):
    __slots__ = (
        "from_clauses",
        "froms",
        "columns_plus_names",
        "_label_resolve_dict",
    )

    if TYPE_CHECKING:
        default_select_compile_options: CacheableOptions
    else:

        class default_select_compile_options(CacheableOptions):
            _cache_key_traversal = []

    if TYPE_CHECKING:

        @classmethod
        def get_plugin_class(
            cls, statement: Executable
        ) -> Type[SelectState]: ...

    def __init__(
        self,
        statement: Select[Any],
        compiler: Optional[SQLCompiler],
        **kw: Any,
    ):
        self.statement = statement
        self.from_clauses = statement._from_obj

        for memoized_entities in statement._memoized_select_entities:
            self._setup_joins(
                memoized_entities._setup_joins, memoized_entities._raw_columns
            )

        if statement._setup_joins:
            self._setup_joins(statement._setup_joins, statement._raw_columns)

        self.froms = self._get_froms(statement)

        self.columns_plus_names = statement._generate_columns_plus_names(True)

    @classmethod
    def _plugin_not_implemented(cls) -> NoReturn:
        raise NotImplementedError(
            "The default SELECT construct without plugins does not "
            "implement this method."
        )

    @classmethod
    def get_column_descriptions(
        cls, statement: Select[Any]
    ) -> List[Dict[str, Any]]:
        return [
            {
                "name": name,
                "type": element.type,
                "expr": element,
            }
            for _, name, _, element, _ in (
                statement._generate_columns_plus_names(False)
            )
        ]

    @classmethod
    def from_statement(
        cls, statement: Select[Any], from_statement: roles.ReturnsRowsRole
    ) -> ExecutableReturnsRows:
        cls._plugin_not_implemented()

    @classmethod
    def get_columns_clause_froms(
        cls, statement: Select[Any]
    ) -> List[FromClause]:
        return cls._normalize_froms(
            itertools.chain.from_iterable(
                element._from_objects for element in statement._raw_columns
            )
        )

    @classmethod
    def _column_naming_convention(
        cls, label_style: SelectLabelStyle
    ) -> _LabelConventionCallable:
        table_qualified = label_style is LABEL_STYLE_TABLENAME_PLUS_COL
        dedupe = label_style is not LABEL_STYLE_NONE

        pa = prefix_anon_map()
        names = set()

        def go(
            c: Union[ColumnElement[Any], TextClause],
            col_name: Optional[str] = None,
        ) -> Optional[str]:
            if is_text_clause(c):
                return None
            elif TYPE_CHECKING:
                assert is_column_element(c)

            if not dedupe:
                name = c._proxy_key
                if name is None:
                    name = "_no_label"
                return name

            name = c._tq_key_label if table_qualified else c._proxy_key

            if name is None:
                name = "_no_label"
                if name in names:
                    return c._anon_label(name) % pa
                else:
                    names.add(name)
                    return name

            elif name in names:
                return (
                    c._anon_tq_key_label % pa
                    if table_qualified
                    else c._anon_key_label % pa
                )
            else:
                names.add(name)
                return name

        return go

    def _get_froms(self, statement: Select[Any]) -> List[FromClause]:
        ambiguous_table_name_map: _AmbiguousTableNameMap
        self._ambiguous_table_name_map = ambiguous_table_name_map = {}

        return self._normalize_froms(
            itertools.chain(
                self.from_clauses,
                itertools.chain.from_iterable(
                    [
                        element._from_objects
                        for element in statement._raw_columns
                    ]
                ),
                itertools.chain.from_iterable(
                    [
                        element._from_objects
                        for element in statement._where_criteria
                    ]
                ),
            ),
            check_statement=statement,
            ambiguous_table_name_map=ambiguous_table_name_map,
        )

    @classmethod
    def _normalize_froms(
        cls,
        iterable_of_froms: Iterable[FromClause],
        check_statement: Optional[Select[Any]] = None,
        ambiguous_table_name_map: Optional[_AmbiguousTableNameMap] = None,
    ) -> List[FromClause]:
        """given an iterable of things to select FROM, reduce them to what
        would actually render in the FROM clause of a SELECT.

        This does the job of checking for JOINs, tables, etc. that are in fact
        overlapping due to cloning, adaption, present in overlapping joins,
        etc.

        """
        seen: Set[FromClause] = set()
        froms: List[FromClause] = []

        for item in iterable_of_froms:
            if is_subquery(item) and item.element is check_statement:
                raise exc.InvalidRequestError(
                    "select() construct refers to itself as a FROM"
                )

            if not seen.intersection(item._cloned_set):
                froms.append(item)
                seen.update(item._cloned_set)

        if froms:
            toremove = set(
                itertools.chain.from_iterable(
                    [_expand_cloned(f._hide_froms) for f in froms]
                )
            )
            if toremove:
                # filter out to FROM clauses not in the list,
                # using a list to maintain ordering
                froms = [f for f in froms if f not in toremove]

            if ambiguous_table_name_map is not None:
                ambiguous_table_name_map.update(
                    (
                        fr.name,
                        _anonymous_label.safe_construct(
                            hash(fr.name), fr.name
                        ),
                    )
                    for item in froms
                    for fr in item._from_objects
                    if is_table(fr)
                    and fr.schema
                    and fr.name not in ambiguous_table_name_map
                )

        return froms

    def _get_display_froms(
        self,
        explicit_correlate_froms: Optional[Sequence[FromClause]] = None,
        implicit_correlate_froms: Optional[Sequence[FromClause]] = None,
    ) -> List[FromClause]:
        """Return the full list of 'from' clauses to be displayed.

        Takes into account a set of existing froms which may be
        rendered in the FROM clause of enclosing selects; this Select
        may want to leave those absent if it is automatically
        correlating.

        """

        froms = self.froms

        if self.statement._correlate:
            to_correlate = self.statement._correlate
            if to_correlate:
                froms = [
                    f
                    for f in froms
                    if f
                    not in _cloned_intersection(
                        _cloned_intersection(
                            froms, explicit_correlate_froms or ()
                        ),
                        to_correlate,
                    )
                ]

        if self.statement._correlate_except is not None:
            froms = [
                f
                for f in froms
                if f
                not in _cloned_difference(
                    _cloned_intersection(
                        froms, explicit_correlate_froms or ()
                    ),
                    self.statement._correlate_except,
                )
            ]

        if (
            self.statement._auto_correlate
            and implicit_correlate_froms
            and len(froms) > 1
        ):
            froms = [
                f
                for f in froms
                if f
                not in _cloned_intersection(froms, implicit_correlate_froms)
            ]

            if not len(froms):
                raise exc.InvalidRequestError(
                    "Select statement '%r"
                    "' returned no FROM clauses "
                    "due to auto-correlation; "
                    "specify correlate(<tables>) "
                    "to control correlation "
                    "manually." % self.statement
                )

        return froms

    def _memoized_attr__label_resolve_dict(
        self,
    ) -> Tuple[
        Dict[str, ColumnElement[Any]],
        Dict[str, ColumnElement[Any]],
        Dict[str, ColumnElement[Any]],
    ]:
        with_cols: Dict[str, ColumnElement[Any]] = {
            c._tq_label or c.key: c
            for c in self.statement._all_selected_columns
            if c._allow_label_resolve
        }
        only_froms: Dict[str, ColumnElement[Any]] = {
            c.key: c  # type: ignore
            for c in _select_iterables(self.froms)
            if c._allow_label_resolve
        }
        only_cols: Dict[str, ColumnElement[Any]] = with_cols.copy()
        for key, value in only_froms.items():
            with_cols.setdefault(key, value)

        return with_cols, only_froms, only_cols

    @classmethod
    def determine_last_joined_entity(
        cls, stmt: Select[Any]
    ) -> Optional[_JoinTargetElement]:
        if stmt._setup_joins:
            return stmt._setup_joins[-1][0]
        else:
            return None

    @classmethod
    def all_selected_columns(cls, statement: Select[Any]) -> _SelectIterable:
        return [c for c in _select_iterables(statement._raw_columns)]

    def _setup_joins(
        self,
        args: Tuple[_SetupJoinsElement, ...],
        raw_columns: List[_ColumnsClauseElement],
    ) -> None:
        for right, onclause, left, flags in args:
            if TYPE_CHECKING:
                if onclause is not None:
                    assert isinstance(onclause, ColumnElement)

            isouter = flags["isouter"]
            full = flags["full"]

            if left is None:
                (
                    left,
                    replace_from_obj_index,
                ) = self._join_determine_implicit_left_side(
                    raw_columns, left, right, onclause
                )
            else:
                (replace_from_obj_index) = self._join_place_explicit_left_side(
                    left
                )

            # these assertions can be made here, as if the right/onclause
            # contained ORM elements, the select() statement would have been
            # upgraded to an ORM select, and this method would not be called;
            # orm.context.ORMSelectCompileState._join() would be
            # used instead.
            if TYPE_CHECKING:
                assert isinstance(right, FromClause)
                if onclause is not None:
                    assert isinstance(onclause, ColumnElement)

            if replace_from_obj_index is not None:
                # splice into an existing element in the
                # self._from_obj list
                left_clause = self.from_clauses[replace_from_obj_index]

                self.from_clauses = (
                    self.from_clauses[:replace_from_obj_index]
                    + (
                        Join(
                            left_clause,
                            right,
                            onclause,
                            isouter=isouter,
                            full=full,
                        ),
                    )
                    + self.from_clauses[replace_from_obj_index + 1 :]
                )
            else:
                assert left is not None
                self.from_clauses = self.from_clauses + (
                    Join(left, right, onclause, isouter=isouter, full=full),
                )

    @util.preload_module("sqlalchemy.sql.util")
    def _join_determine_implicit_left_side(
        self,
        raw_columns: List[_ColumnsClauseElement],
        left: Optional[FromClause],
        right: _JoinTargetElement,
        onclause: Optional[ColumnElement[Any]],
    ) -> Tuple[Optional[FromClause], Optional[int]]:
        """When join conditions don't express the left side explicitly,
        determine if an existing FROM or entity in this query
        can serve as the left hand side.

        """

        sql_util = util.preloaded.sql_util

        replace_from_obj_index: Optional[int] = None

        from_clauses = self.from_clauses

        if from_clauses:
            indexes: List[int] = sql_util.find_left_clause_to_join_from(
                from_clauses, right, onclause
            )

            if len(indexes) == 1:
                replace_from_obj_index = indexes[0]
                left = from_clauses[replace_from_obj_index]
        else:
            potential = {}
            statement = self.statement

            for from_clause in itertools.chain(
                itertools.chain.from_iterable(
                    [element._from_objects for element in raw_columns]
                ),
                itertools.chain.from_iterable(
                    [
                        element._from_objects
                        for element in statement._where_criteria
                    ]
                ),
            ):
                potential[from_clause] = ()

            all_clauses = list(potential.keys())
            indexes = sql_util.find_left_clause_to_join_from(
                all_clauses, right, onclause
            )

            if len(indexes) == 1:
                left = all_clauses[indexes[0]]

        if len(indexes) > 1:
            raise exc.InvalidRequestError(
                "Can't determine which FROM clause to join "
                "from, there are multiple FROMS which can "
                "join to this entity. Please use the .select_from() "
                "method to establish an explicit left side, as well as "
                "providing an explicit ON clause if not present already to "
                "help resolve the ambiguity."
            )
        elif not indexes:
            raise exc.InvalidRequestError(
                "Don't know how to join to %r. "
                "Please use the .select_from() "
                "method to establish an explicit left side, as well as "
                "providing an explicit ON clause if not present already to "
                "help resolve the ambiguity." % (right,)
            )
        return left, replace_from_obj_index

    @util.preload_module("sqlalchemy.sql.util")
    def _join_place_explicit_left_side(
        self, left: FromClause
    ) -> Optional[int]:
        replace_from_obj_index: Optional[int] = None

        sql_util = util.preloaded.sql_util

        from_clauses = list(self.statement._iterate_from_elements())

        if from_clauses:
            indexes: List[int] = sql_util.find_left_clause_that_matches_given(
                self.from_clauses, left
            )
        else:
            indexes = []

        if len(indexes) > 1:
            raise exc.InvalidRequestError(
                "Can't identify which entity in which to assign the "
                "left side of this join.   Please use a more specific "
                "ON clause."
            )

        # have an index, means the left side is already present in
        # an existing FROM in the self._from_obj tuple
        if indexes:
            replace_from_obj_index = indexes[0]

        # no index, means we need to add a new element to the
        # self._from_obj tuple

        return replace_from_obj_index


class _SelectFromElements:
    __slots__ = ()

    _raw_columns: List[_ColumnsClauseElement]
    _where_criteria: Tuple[ColumnElement[Any], ...]
    _from_obj: Tuple[FromClause, ...]

    def _iterate_from_elements(self) -> Iterator[FromClause]:
        # note this does not include elements
        # in _setup_joins

        seen = set()
        for element in self._raw_columns:
            for fr in element._from_objects:
                if fr in seen:
                    continue
                seen.add(fr)
                yield fr
        for element in self._where_criteria:
            for fr in element._from_objects:
                if fr in seen:
                    continue
                seen.add(fr)
                yield fr
        for element in self._from_obj:
            if element in seen:
                continue
            seen.add(element)
            yield element


class _MemoizedSelectEntities(
    cache_key.HasCacheKey, traversals.HasCopyInternals, visitors.Traversible
):
    """represents partial state from a Select object, for the case
    where Select.columns() has redefined the set of columns/entities the
    statement will be SELECTing from.  This object represents
    the entities from the SELECT before that transformation was applied,
    so that transformations that were made in terms of the SELECT at that
    time, such as join() as well as options(), can access the correct context.

    In previous SQLAlchemy versions, this wasn't needed because these
    constructs calculated everything up front, like when you called join()
    or options(), it did everything to figure out how that would translate
    into specific SQL constructs that would be ready to send directly to the
    SQL compiler when needed.  But as of
    1.4, all of that stuff is done in the compilation phase, during the
    "compile state" portion of the process, so that the work can all be
    cached.  So it needs to be able to resolve joins/options2 based on what
    the list of entities was when those methods were called.


    """

    __visit_name__ = "memoized_select_entities"

    _traverse_internals: _TraverseInternalsType = [
        ("_raw_columns", InternalTraversal.dp_clauseelement_list),
        ("_setup_joins", InternalTraversal.dp_setup_join_tuple),
        ("_with_options", InternalTraversal.dp_executable_options),
    ]

    _is_clone_of: Optional[ClauseElement]
    _raw_columns: List[_ColumnsClauseElement]
    _setup_joins: Tuple[_SetupJoinsElement, ...]
    _with_options: Tuple[ExecutableOption, ...]

    _annotations = util.EMPTY_DICT

    def _clone(self, **kw: Any) -> Self:
        c = self.__class__.__new__(self.__class__)
        c.__dict__ = {k: v for k, v in self.__dict__.items()}

        c._is_clone_of = self.__dict__.get("_is_clone_of", self)
        return c

    @classmethod
    def _generate_for_statement(cls, select_stmt: Select[Any]) -> None:
        if select_stmt._setup_joins or select_stmt._with_options:
            self = _MemoizedSelectEntities()
            self._raw_columns = select_stmt._raw_columns
            self._setup_joins = select_stmt._setup_joins
            self._with_options = select_stmt._with_options

            select_stmt._memoized_select_entities += (self,)
            select_stmt._raw_columns = []
            select_stmt._setup_joins = select_stmt._with_options = ()


class Select(
    HasPrefixes,
    HasSuffixes,
    HasHints,
    HasCompileState,
    _SelectFromElements,
    GenerativeSelect,
    TypedReturnsRows[_TP],
):
    """Represents a ``SELECT`` statement.

    The :class:`_sql.Select` object is normally constructed using the
    :func:`_sql.select` function.  See that function for details.

    .. seealso::

        :func:`_sql.select`

        :ref:`tutorial_selecting_data` - in the 2.0 tutorial

    """

    __visit_name__ = "select"

    _setup_joins: Tuple[_SetupJoinsElement, ...] = ()
    _memoized_select_entities: Tuple[TODO_Any, ...] = ()

    _raw_columns: List[_ColumnsClauseElement]

    _distinct: bool = False
    _distinct_on: Tuple[ColumnElement[Any], ...] = ()
    _correlate: Tuple[FromClause, ...] = ()
    _correlate_except: Optional[Tuple[FromClause, ...]] = None
    _where_criteria: Tuple[ColumnElement[Any], ...] = ()
    _having_criteria: Tuple[ColumnElement[Any], ...] = ()
    _from_obj: Tuple[FromClause, ...] = ()
    _auto_correlate = True
    _is_select_statement = True
    _compile_options: CacheableOptions = (
        SelectState.default_select_compile_options
    )

    _traverse_internals: _TraverseInternalsType = (
        [
            ("_raw_columns", InternalTraversal.dp_clauseelement_list),
            (
                "_memoized_select_entities",
                InternalTraversal.dp_memoized_select_entities,
            ),
            ("_from_obj", InternalTraversal.dp_clauseelement_list),
            ("_where_criteria", InternalTraversal.dp_clauseelement_tuple),
            ("_having_criteria", InternalTraversal.dp_clauseelement_tuple),
            ("_order_by_clauses", InternalTraversal.dp_clauseelement_tuple),
            ("_group_by_clauses", InternalTraversal.dp_clauseelement_tuple),
            ("_setup_joins", InternalTraversal.dp_setup_join_tuple),
            ("_correlate", InternalTraversal.dp_clauseelement_tuple),
            ("_correlate_except", InternalTraversal.dp_clauseelement_tuple),
            ("_limit_clause", InternalTraversal.dp_clauseelement),
            ("_offset_clause", InternalTraversal.dp_clauseelement),
            ("_fetch_clause", InternalTraversal.dp_clauseelement),
            ("_fetch_clause_options", InternalTraversal.dp_plain_dict),
            ("_for_update_arg", InternalTraversal.dp_clauseelement),
            ("_distinct", InternalTraversal.dp_boolean),
            ("_distinct_on", InternalTraversal.dp_clauseelement_tuple),
            ("_label_style", InternalTraversal.dp_plain_obj),
        ]
        + HasCTE._has_ctes_traverse_internals
        + HasPrefixes._has_prefixes_traverse_internals
        + HasSuffixes._has_suffixes_traverse_internals
        + HasHints._has_hints_traverse_internals
        + SupportsCloneAnnotations._clone_annotations_traverse_internals
        + Executable._executable_traverse_internals
    )

    _cache_key_traversal: _CacheKeyTraversalType = _traverse_internals + [
        ("_compile_options", InternalTraversal.dp_has_cache_key)
    ]

    _compile_state_factory: Type[SelectState]

    @classmethod
    def _create_raw_select(cls, **kw: Any) -> Select[Any]:
        """Create a :class:`.Select` using raw ``__new__`` with no coercions.

        Used internally to build up :class:`.Select` constructs with
        pre-established state.

        """

        stmt = Select.__new__(Select)
        stmt.__dict__.update(kw)
        return stmt

    def __init__(self, *entities: _ColumnsClauseArgument[Any]):
        r"""Construct a new :class:`_expression.Select`.

        The public constructor for :class:`_expression.Select` is the
        :func:`_sql.select` function.

        """
        self._raw_columns = [
            coercions.expect(
                roles.ColumnsClauseRole, ent, apply_propagate_attrs=self
            )
            for ent in entities
        ]

        GenerativeSelect.__init__(self)

    def _scalar_type(self) -> TypeEngine[Any]:
        if not self._raw_columns:
            return NULLTYPE
        elem = self._raw_columns[0]
        cols = list(elem._select_iterable)
        return cols[0].type

    def filter(self, *criteria: _ColumnExpressionArgument[bool]) -> Self:
        """A synonym for the :meth:`_sql.Select.where` method."""

        return self.where(*criteria)

    def _filter_by_zero(
        self,
    ) -> Union[
        FromClause, _JoinTargetProtocol, ColumnElement[Any], TextClause
    ]:
        if self._setup_joins:
            meth = SelectState.get_plugin_class(
                self
            ).determine_last_joined_entity
            _last_joined_entity = meth(self)
            if _last_joined_entity is not None:
                return _last_joined_entity

        if self._from_obj:
            return self._from_obj[0]

        return self._raw_columns[0]

    if TYPE_CHECKING:

        @overload
        def scalar_subquery(
            self: Select[Tuple[_MAYBE_ENTITY]],
        ) -> ScalarSelect[Any]: ...

        @overload
        def scalar_subquery(
            self: Select[Tuple[_NOT_ENTITY]],
        ) -> ScalarSelect[_NOT_ENTITY]: ...

        @overload
        def scalar_subquery(self) -> ScalarSelect[Any]: ...

        def scalar_subquery(self) -> ScalarSelect[Any]: ...

    def filter_by(self, **kwargs: Any) -> Self:
        r"""apply the given filtering criterion as a WHERE clause
        to this select.

        """
        from_entity = self._filter_by_zero()

        clauses = [
            _entity_namespace_key(from_entity, key) == value
            for key, value in kwargs.items()
        ]
        return self.filter(*clauses)

    @property
    def column_descriptions(self) -> Any:
        """Return a :term:`plugin-enabled` 'column descriptions' structure
        referring to the columns which are SELECTed by this statement.

        This attribute is generally useful when using the ORM, as an
        extended structure which includes information about mapped
        entities is returned.  The section :ref:`queryguide_inspection`
        contains more background.

        For a Core-only statement, the structure returned by this accessor
        is derived from the same objects that are returned by the
        :attr:`.Select.selected_columns` accessor, formatted as a list of
        dictionaries which contain the keys ``name``, ``type`` and ``expr``,
        which indicate the column expressions to be selected::

            >>> stmt = select(user_table)
            >>> stmt.column_descriptions
            [
                {
                    'name': 'id',
                    'type': Integer(),
                    'expr': Column('id', Integer(), ...)},
                {
                    'name': 'name',
                    'type': String(length=30),
                    'expr': Column('name', String(length=30), ...)}
            ]

        .. versionchanged:: 1.4.33 The :attr:`.Select.column_descriptions`
           attribute returns a structure for a Core-only set of entities,
           not just ORM-only entities.

        .. seealso::

            :attr:`.UpdateBase.entity_description` - entity information for
            an :func:`.insert`, :func:`.update`, or :func:`.delete`

            :ref:`queryguide_inspection` - ORM background

        """
        meth = SelectState.get_plugin_class(self).get_column_descriptions
        return meth(self)

    def from_statement(
        self, statement: roles.ReturnsRowsRole
    ) -> ExecutableReturnsRows:
        """Apply the columns which this :class:`.Select` would select
        onto another statement.

        This operation is :term:`plugin-specific` and will raise a not
        supported exception if this :class:`_sql.Select` does not select from
        plugin-enabled entities.


        The statement is typically either a :func:`_expression.text` or
        :func:`_expression.select` construct, and should return the set of
        columns appropriate to the entities represented by this
        :class:`.Select`.

        .. seealso::

            :ref:`orm_queryguide_selecting_text` - usage examples in the
            ORM Querying Guide

        """
        meth = SelectState.get_plugin_class(self).from_statement
        return meth(self, statement)

    @_generative
    def join(
        self,
        target: _JoinTargetArgument,
        onclause: Optional[_OnClauseArgument] = None,
        *,
        isouter: bool = False,
        full: bool = False,
    ) -> Self:
        r"""Create a SQL JOIN against this :class:`_expression.Select`
        object's criterion
        and apply generatively, returning the newly resulting
        :class:`_expression.Select`.

        E.g.::

            stmt = select(user_table).join(address_table, user_table.c.id == address_table.c.user_id)

        The above statement generates SQL similar to::

            SELECT user.id, user.name FROM user JOIN address ON user.id = address.user_id

        .. versionchanged:: 1.4 :meth:`_expression.Select.join` now creates
           a :class:`_sql.Join` object between a :class:`_sql.FromClause`
           source that is within the FROM clause of the existing SELECT,
           and a given target :class:`_sql.FromClause`, and then adds
           this :class:`_sql.Join` to the FROM clause of the newly generated
           SELECT statement.    This is completely reworked from the behavior
           in 1.3, which would instead create a subquery of the entire
           :class:`_expression.Select` and then join that subquery to the
           target.

           This is a **backwards incompatible change** as the previous behavior
           was mostly useless, producing an unnamed subquery rejected by
           most databases in any case.   The new behavior is modeled after
           that of the very successful :meth:`_orm.Query.join` method in the
           ORM, in order to support the functionality of :class:`_orm.Query`
           being available by using a :class:`_sql.Select` object with an
           :class:`_orm.Session`.

           See the notes for this change at :ref:`change_select_join`.


        :param target: target table to join towards

        :param onclause: ON clause of the join.  If omitted, an ON clause
         is generated automatically based on the :class:`_schema.ForeignKey`
         linkages between the two tables, if one can be unambiguously
         determined, otherwise an error is raised.

        :param isouter: if True, generate LEFT OUTER join.  Same as
         :meth:`_expression.Select.outerjoin`.

        :param full: if True, generate FULL OUTER join.

        .. seealso::

            :ref:`tutorial_select_join` - in the :doc:`/tutorial/index`

            :ref:`orm_queryguide_joins` - in the :ref:`queryguide_toplevel`

            :meth:`_expression.Select.join_from`

            :meth:`_expression.Select.outerjoin`

        """  # noqa: E501
        join_target = coercions.expect(
            roles.JoinTargetRole, target, apply_propagate_attrs=self
        )
        if onclause is not None:
            onclause_element = coercions.expect(roles.OnClauseRole, onclause)
        else:
            onclause_element = None

        self._setup_joins += (
            (
                join_target,
                onclause_element,
                None,
                {"isouter": isouter, "full": full},
            ),
        )
        return self

    def outerjoin_from(
        self,
        from_: _FromClauseArgument,
        target: _JoinTargetArgument,
        onclause: Optional[_OnClauseArgument] = None,
        *,
        full: bool = False,
    ) -> Self:
        r"""Create a SQL LEFT OUTER JOIN against this
        :class:`_expression.Select` object's criterion and apply generatively,
        returning the newly resulting :class:`_expression.Select`.

        Usage is the same as that of :meth:`_selectable.Select.join_from`.

        """
        return self.join_from(
            from_, target, onclause=onclause, isouter=True, full=full
        )

    @_generative
    def join_from(
        self,
        from_: _FromClauseArgument,
        target: _JoinTargetArgument,
        onclause: Optional[_OnClauseArgument] = None,
        *,
        isouter: bool = False,
        full: bool = False,
    ) -> Self:
        r"""Create a SQL JOIN against this :class:`_expression.Select`
        object's criterion
        and apply generatively, returning the newly resulting
        :class:`_expression.Select`.

        E.g.::

            stmt = select(user_table, address_table).join_from(
                user_table, address_table, user_table.c.id == address_table.c.user_id
            )

        The above statement generates SQL similar to::

            SELECT user.id, user.name, address.id, address.email, address.user_id
            FROM user JOIN address ON user.id = address.user_id

        .. versionadded:: 1.4

        :param from\_: the left side of the join, will be rendered in the
         FROM clause and is roughly equivalent to using the
         :meth:`.Select.select_from` method.

        :param target: target table to join towards

        :param onclause: ON clause of the join.

        :param isouter: if True, generate LEFT OUTER join.  Same as
         :meth:`_expression.Select.outerjoin`.

        :param full: if True, generate FULL OUTER join.

        .. seealso::

            :ref:`tutorial_select_join` - in the :doc:`/tutorial/index`

            :ref:`orm_queryguide_joins` - in the :ref:`queryguide_toplevel`

            :meth:`_expression.Select.join`

        """  # noqa: E501

        # note the order of parsing from vs. target is important here, as we
        # are also deriving the source of the plugin (i.e. the subject mapper
        # in an ORM query) which should favor the "from_" over the "target"

        from_ = coercions.expect(
            roles.FromClauseRole, from_, apply_propagate_attrs=self
        )
        join_target = coercions.expect(
            roles.JoinTargetRole, target, apply_propagate_attrs=self
        )
        if onclause is not None:
            onclause_element = coercions.expect(roles.OnClauseRole, onclause)
        else:
            onclause_element = None

        self._setup_joins += (
            (
                join_target,
                onclause_element,
                from_,
                {"isouter": isouter, "full": full},
            ),
        )
        return self

    def outerjoin(
        self,
        target: _JoinTargetArgument,
        onclause: Optional[_OnClauseArgument] = None,
        *,
        full: bool = False,
    ) -> Self:
        """Create a left outer join.

        Parameters are the same as that of :meth:`_expression.Select.join`.

        .. versionchanged:: 1.4 :meth:`_expression.Select.outerjoin` now
           creates a :class:`_sql.Join` object between a
           :class:`_sql.FromClause` source that is within the FROM clause of
           the existing SELECT, and a given target :class:`_sql.FromClause`,
           and then adds this :class:`_sql.Join` to the FROM clause of the
           newly generated SELECT statement.    This is completely reworked
           from the behavior in 1.3, which would instead create a subquery of
           the entire
           :class:`_expression.Select` and then join that subquery to the
           target.

           This is a **backwards incompatible change** as the previous behavior
           was mostly useless, producing an unnamed subquery rejected by
           most databases in any case.   The new behavior is modeled after
           that of the very successful :meth:`_orm.Query.join` method in the
           ORM, in order to support the functionality of :class:`_orm.Query`
           being available by using a :class:`_sql.Select` object with an
           :class:`_orm.Session`.

           See the notes for this change at :ref:`change_select_join`.

        .. seealso::

            :ref:`tutorial_select_join` - in the :doc:`/tutorial/index`

            :ref:`orm_queryguide_joins` - in the :ref:`queryguide_toplevel`

            :meth:`_expression.Select.join`

        """
        return self.join(target, onclause=onclause, isouter=True, full=full)

    def get_final_froms(self) -> Sequence[FromClause]:
        """Compute the final displayed list of :class:`_expression.FromClause`
        elements.

        This method will run through the full computation required to
        determine what FROM elements will be displayed in the resulting
        SELECT statement, including shadowing individual tables with
        JOIN objects, as well as full computation for ORM use cases including
        eager loading clauses.

        For ORM use, this accessor returns the **post compilation**
        list of FROM objects; this collection will include elements such as
        eagerly loaded tables and joins.  The objects will **not** be
        ORM enabled and not work as a replacement for the
        :meth:`_sql.Select.select_froms` collection; additionally, the
        method is not well performing for an ORM enabled statement as it
        will incur the full ORM construction process.

        To retrieve the FROM list that's implied by the "columns" collection
        passed to the :class:`_sql.Select` originally, use the
        :attr:`_sql.Select.columns_clause_froms` accessor.

        To select from an alternative set of columns while maintaining the
        FROM list, use the :meth:`_sql.Select.with_only_columns` method and
        pass the
        :paramref:`_sql.Select.with_only_columns.maintain_column_froms`
        parameter.

        .. versionadded:: 1.4.23 - the :meth:`_sql.Select.get_final_froms`
           method replaces the previous :attr:`_sql.Select.froms` accessor,
           which is deprecated.

        .. seealso::

            :attr:`_sql.Select.columns_clause_froms`

        """

        return self._compile_state_factory(self, None)._get_display_froms()

    @property
    @util.deprecated(
        "1.4.23",
        "The :attr:`_expression.Select.froms` attribute is moved to "
        "the :meth:`_expression.Select.get_final_froms` method.",
    )
    def froms(self) -> Sequence[FromClause]:
        """Return the displayed list of :class:`_expression.FromClause`
        elements.


        """
        return self.get_final_froms()

    @property
    def columns_clause_froms(self) -> List[FromClause]:
        """Return the set of :class:`_expression.FromClause` objects implied
        by the columns clause of this SELECT statement.

        .. versionadded:: 1.4.23

        .. seealso::

            :attr:`_sql.Select.froms` - "final" FROM list taking the full
            statement into account

            :meth:`_sql.Select.with_only_columns` - makes use of this
            collection to set up a new FROM list

        """

        return SelectState.get_plugin_class(self).get_columns_clause_froms(
            self
        )

    @property
    def inner_columns(self) -> _SelectIterable:
        """An iterator of all :class:`_expression.ColumnElement`
        expressions which would
        be rendered into the columns clause of the resulting SELECT statement.

        This method is legacy as of 1.4 and is superseded by the
        :attr:`_expression.Select.exported_columns` collection.

        """

        return iter(self._all_selected_columns)

    def is_derived_from(self, fromclause: Optional[FromClause]) -> bool:
        if fromclause is not None and self in fromclause._cloned_set:
            return True

        for f in self._iterate_from_elements():
            if f.is_derived_from(fromclause):
                return True
        return False

    def _copy_internals(
        self, clone: _CloneCallableType = _clone, **kw: Any
    ) -> None:
        # Select() object has been cloned and probably adapted by the
        # given clone function.  Apply the cloning function to internal
        # objects

        # 1. keep a dictionary of the froms we've cloned, and what
        # they've become.  This allows us to ensure the same cloned from
        # is used when other items such as columns are "cloned"

        all_the_froms = set(
            itertools.chain(
                _from_objects(*self._raw_columns),
                _from_objects(*self._where_criteria),
                _from_objects(*[elem[0] for elem in self._setup_joins]),
            )
        )

        # do a clone for the froms we've gathered.  what is important here
        # is if any of the things we are selecting from, like tables,
        # were converted into Join objects.   if so, these need to be
        # added to _from_obj explicitly, because otherwise they won't be
        # part of the new state, as they don't associate themselves with
        # their columns.
        new_froms = {f: clone(f, **kw) for f in all_the_froms}

        # 2. copy FROM collections, adding in joins that we've created.
        existing_from_obj = [clone(f, **kw) for f in self._from_obj]
        add_froms = (
            {f for f in new_froms.values() if isinstance(f, Join)}
            .difference(all_the_froms)
            .difference(existing_from_obj)
        )

        self._from_obj = tuple(existing_from_obj) + tuple(add_froms)

        # 3. clone everything else, making sure we use columns
        # corresponding to the froms we just made.
        def replace(
            obj: Union[BinaryExpression[Any], ColumnClause[Any]],
            **kw: Any,
        ) -> Optional[KeyedColumnElement[ColumnElement[Any]]]:
            if isinstance(obj, ColumnClause) and obj.table in new_froms:
                newelem = new_froms[obj.table].corresponding_column(obj)
                return newelem
            return None

        kw["replace"] = replace

        # copy everything else.   for table-ish things like correlate,
        # correlate_except, setup_joins, these clone normally.  For
        # column-expression oriented things like raw_columns, where_criteria,
        # order by, we get this from the new froms.
        super()._copy_internals(clone=clone, omit_attrs=("_from_obj",), **kw)

        self._reset_memoizations()

    def get_children(self, **kw: Any) -> Iterable[ClauseElement]:
        return itertools.chain(
            super().get_children(
                omit_attrs=("_from_obj", "_correlate", "_correlate_except"),
                **kw,
            ),
            self._iterate_from_elements(),
        )

    @_generative
    def add_columns(
        self, *entities: _ColumnsClauseArgument[Any]
    ) -> Select[Any]:
        r"""Return a new :func:`_expression.select` construct with
        the given entities appended to its columns clause.

        E.g.::

            my_select = my_select.add_columns(table.c.new_column)

        The original expressions in the columns clause remain in place.
        To replace the original expressions with new ones, see the method
        :meth:`_expression.Select.with_only_columns`.

        :param \*entities: column, table, or other entity expressions to be
         added to the columns clause

        .. seealso::

            :meth:`_expression.Select.with_only_columns` - replaces existing
            expressions rather than appending.

            :ref:`orm_queryguide_select_multiple_entities` - ORM-centric
            example

        """
        self._reset_memoizations()

        self._raw_columns = self._raw_columns + [
            coercions.expect(
                roles.ColumnsClauseRole, column, apply_propagate_attrs=self
            )
            for column in entities
        ]
        return self

    def _set_entities(
        self, entities: Iterable[_ColumnsClauseArgument[Any]]
    ) -> None:
        self._raw_columns = [
            coercions.expect(
                roles.ColumnsClauseRole, ent, apply_propagate_attrs=self
            )
            for ent in util.to_list(entities)
        ]

    @util.deprecated(
        "1.4",
        "The :meth:`_expression.Select.column` method is deprecated and will "
        "be removed in a future release.  Please use "
        ":meth:`_expression.Select.add_columns`",
    )
    def column(self, column: _ColumnsClauseArgument[Any]) -> Select[Any]:
        """Return a new :func:`_expression.select` construct with
        the given column expression added to its columns clause.

        E.g.::

            my_select = my_select.column(table.c.new_column)

        See the documentation for
        :meth:`_expression.Select.with_only_columns`
        for guidelines on adding /replacing the columns of a
        :class:`_expression.Select` object.

        """
        return self.add_columns(column)

    @util.preload_module("sqlalchemy.sql.util")
    def reduce_columns(self, only_synonyms: bool = True) -> Select[Any]:
        """Return a new :func:`_expression.select` construct with redundantly
        named, equivalently-valued columns removed from the columns clause.

        "Redundant" here means two columns where one refers to the
        other either based on foreign key, or via a simple equality
        comparison in the WHERE clause of the statement.   The primary purpose
        of this method is to automatically construct a select statement
        with all uniquely-named columns, without the need to use
        table-qualified labels as
        :meth:`_expression.Select.set_label_style`
        does.

        When columns are omitted based on foreign key, the referred-to
        column is the one that's kept.  When columns are omitted based on
        WHERE equivalence, the first column in the columns clause is the
        one that's kept.

        :param only_synonyms: when True, limit the removal of columns
         to those which have the same name as the equivalent.   Otherwise,
         all columns that are equivalent to another are removed.

        """
        woc: Select[Any]
        woc = self.with_only_columns(
            *util.preloaded.sql_util.reduce_columns(
                self._all_selected_columns,
                only_synonyms=only_synonyms,
                *(self._where_criteria + self._from_obj),
            )
        )
        return woc

    # START OVERLOADED FUNCTIONS self.with_only_columns Select 8

    # code within this block is **programmatically,
    # statically generated** by tools/generate_sel_v1_overloads.py

    @overload
    def with_only_columns(self, __ent0: _TCCA[_T0]) -> Select[Tuple[_T0]]: ...

    @overload
    def with_only_columns(
        self, __ent0: _TCCA[_T0], __ent1: _TCCA[_T1]
    ) -> Select[Tuple[_T0, _T1]]: ...

    @overload
    def with_only_columns(
        self, __ent0: _TCCA[_T0], __ent1: _TCCA[_T1], __ent2: _TCCA[_T2]
    ) -> Select[Tuple[_T0, _T1, _T2]]: ...

    @overload
    def with_only_columns(
        self,
        __ent0: _TCCA[_T0],
        __ent1: _TCCA[_T1],
        __ent2: _TCCA[_T2],
        __ent3: _TCCA[_T3],
    ) -> Select[Tuple[_T0, _T1, _T2, _T3]]: ...

    @overload
    def with_only_columns(
        self,
        __ent0: _TCCA[_T0],
        __ent1: _TCCA[_T1],
        __ent2: _TCCA[_T2],
        __ent3: _TCCA[_T3],
        __ent4: _TCCA[_T4],
    ) -> Select[Tuple[_T0, _T1, _T2, _T3, _T4]]: ...

    @overload
    def with_only_columns(
        self,
        __ent0: _TCCA[_T0],
        __ent1: _TCCA[_T1],
        __ent2: _TCCA[_T2],
        __ent3: _TCCA[_T3],
        __ent4: _TCCA[_T4],
        __ent5: _TCCA[_T5],
    ) -> Select[Tuple[_T0, _T1, _T2, _T3, _T4, _T5]]: ...

    @overload
    def with_only_columns(
        self,
        __ent0: _TCCA[_T0],
        __ent1: _TCCA[_T1],
        __ent2: _TCCA[_T2],
        __ent3: _TCCA[_T3],
        __ent4: _TCCA[_T4],
        __ent5: _TCCA[_T5],
        __ent6: _TCCA[_T6],
    ) -> Select[Tuple[_T0, _T1, _T2, _T3, _T4, _T5, _T6]]: ...

    @overload
    def with_only_columns(
        self,
        __ent0: _TCCA[_T0],
        __ent1: _TCCA[_T1],
        __ent2: _TCCA[_T2],
        __ent3: _TCCA[_T3],
        __ent4: _TCCA[_T4],
        __ent5: _TCCA[_T5],
        __ent6: _TCCA[_T6],
        __ent7: _TCCA[_T7],
    ) -> Select[Tuple[_T0, _T1, _T2, _T3, _T4, _T5, _T6, _T7]]: ...

    # END OVERLOADED FUNCTIONS self.with_only_columns

    @overload
    def with_only_columns(
        self,
        *entities: _ColumnsClauseArgument[Any],
        maintain_column_froms: bool = False,
        **__kw: Any,
    ) -> Select[Any]: ...

    @_generative
    def with_only_columns(
        self,
        *entities: _ColumnsClauseArgument[Any],
        maintain_column_froms: bool = False,
        **__kw: Any,
    ) -> Select[Any]:
        r"""Return a new :func:`_expression.select` construct with its columns
        clause replaced with the given entities.

        By default, this method is exactly equivalent to as if the original
        :func:`_expression.select` had been called with the given entities.
        E.g. a statement::

            s = select(table1.c.a, table1.c.b)
            s = s.with_only_columns(table1.c.b)

        should be exactly equivalent to::

            s = select(table1.c.b)

        In this mode of operation, :meth:`_sql.Select.with_only_columns`
        will also dynamically alter the FROM clause of the
        statement if it is not explicitly stated.
        To maintain the existing set of FROMs including those implied by the
        current columns clause, add the
        :paramref:`_sql.Select.with_only_columns.maintain_column_froms`
        parameter::

            s = select(table1.c.a, table2.c.b)
            s = s.with_only_columns(table1.c.a, maintain_column_froms=True)

        The above parameter performs a transfer of the effective FROMs
        in the columns collection to the :meth:`_sql.Select.select_from`
        method, as though the following were invoked::

            s = select(table1.c.a, table2.c.b)
            s = s.select_from(table1, table2).with_only_columns(table1.c.a)

        The :paramref:`_sql.Select.with_only_columns.maintain_column_froms`
        parameter makes use of the :attr:`_sql.Select.columns_clause_froms`
        collection and performs an operation equivalent to the following::

            s = select(table1.c.a, table2.c.b)
            s = s.select_from(*s.columns_clause_froms).with_only_columns(table1.c.a)

        :param \*entities: column expressions to be used.

        :param maintain_column_froms: boolean parameter that will ensure the
         FROM list implied from the current columns clause will be transferred
         to the :meth:`_sql.Select.select_from` method first.

         .. versionadded:: 1.4.23

        """  # noqa: E501

        if __kw:
            raise _no_kw()

        # memoizations should be cleared here as of
        # I95c560ffcbfa30b26644999412fb6a385125f663 , asserting this
        # is the case for now.
        self._assert_no_memoizations()

        if maintain_column_froms:
            self.select_from.non_generative(  # type: ignore
                self, *self.columns_clause_froms
            )

        # then memoize the FROMs etc.
        _MemoizedSelectEntities._generate_for_statement(self)

        self._raw_columns = [
            coercions.expect(roles.ColumnsClauseRole, c)
            for c in coercions._expression_collection_was_a_list(
                "entities", "Select.with_only_columns", entities
            )
        ]
        return self

    @property
    def whereclause(self) -> Optional[ColumnElement[Any]]:
        """Return the completed WHERE clause for this
        :class:`_expression.Select` statement.

        This assembles the current collection of WHERE criteria
        into a single :class:`_expression.BooleanClauseList` construct.


        .. versionadded:: 1.4

        """

        return BooleanClauseList._construct_for_whereclause(
            self._where_criteria
        )

    _whereclause = whereclause

    @_generative
    def where(self, *whereclause: _ColumnExpressionArgument[bool]) -> Self:
        """Return a new :func:`_expression.select` construct with
        the given expression added to
        its WHERE clause, joined to the existing clause via AND, if any.

        """

        assert isinstance(self._where_criteria, tuple)

        for criterion in whereclause:
            where_criteria: ColumnElement[Any] = coercions.expect(
                roles.WhereHavingRole, criterion, apply_propagate_attrs=self
            )
            self._where_criteria += (where_criteria,)
        return self

    @_generative
    def having(self, *having: _ColumnExpressionArgument[bool]) -> Self:
        """Return a new :func:`_expression.select` construct with
        the given expression added to
        its HAVING clause, joined to the existing clause via AND, if any.

        """

        for criterion in having:
            having_criteria = coercions.expect(
                roles.WhereHavingRole, criterion, apply_propagate_attrs=self
            )
            self._having_criteria += (having_criteria,)
        return self

    @_generative
    def distinct(self, *expr: _ColumnExpressionArgument[Any]) -> Self:
        r"""Return a new :func:`_expression.select` construct which
        will apply DISTINCT to its columns clause.

        :param \*expr: optional column expressions.  When present,
         the PostgreSQL dialect will render a ``DISTINCT ON (<expressions>>)``
         construct.

         .. deprecated:: 1.4 Using \*expr in other dialects is deprecated
            and will raise :class:`_exc.CompileError` in a future version.

        """
        if expr:
            self._distinct = True
            self._distinct_on = self._distinct_on + tuple(
                coercions.expect(roles.ByOfRole, e, apply_propagate_attrs=self)
                for e in expr
            )
        else:
            self._distinct = True
        return self

    @_generative
    def select_from(self, *froms: _FromClauseArgument) -> Self:
        r"""Return a new :func:`_expression.select` construct with the
        given FROM expression(s)
        merged into its list of FROM objects.

        E.g.::

            table1 = table('t1', column('a'))
            table2 = table('t2', column('b'))
            s = select(table1.c.a).\
                select_from(
                    table1.join(table2, table1.c.a==table2.c.b)
                )

        The "from" list is a unique set on the identity of each element,
        so adding an already present :class:`_schema.Table`
        or other selectable
        will have no effect.   Passing a :class:`_expression.Join` that refers
        to an already present :class:`_schema.Table`
        or other selectable will have
        the effect of concealing the presence of that selectable as
        an individual element in the rendered FROM list, instead
        rendering it into a JOIN clause.

        While the typical purpose of :meth:`_expression.Select.select_from`
        is to
        replace the default, derived FROM clause with a join, it can
        also be called with individual table elements, multiple times
        if desired, in the case that the FROM clause cannot be fully
        derived from the columns clause::

            select(func.count('*')).select_from(table1)

        """

        self._from_obj += tuple(
            coercions.expect(
                roles.FromClauseRole, fromclause, apply_propagate_attrs=self
            )
            for fromclause in froms
        )
        return self

    @_generative
    def correlate(
        self,
        *fromclauses: Union[Literal[None, False], _FromClauseArgument],
    ) -> Self:
        r"""Return a new :class:`_expression.Select`
        which will correlate the given FROM
        clauses to that of an enclosing :class:`_expression.Select`.

        Calling this method turns off the :class:`_expression.Select` object's
        default behavior of "auto-correlation".  Normally, FROM elements
        which appear in a :class:`_expression.Select`
        that encloses this one via
        its :term:`WHERE clause`, ORDER BY, HAVING or
        :term:`columns clause` will be omitted from this
        :class:`_expression.Select`
        object's :term:`FROM clause`.
        Setting an explicit correlation collection using the
        :meth:`_expression.Select.correlate`
        method provides a fixed list of FROM objects
        that can potentially take place in this process.

        When :meth:`_expression.Select.correlate`
        is used to apply specific FROM clauses
        for correlation, the FROM elements become candidates for
        correlation regardless of how deeply nested this
        :class:`_expression.Select`
        object is, relative to an enclosing :class:`_expression.Select`
        which refers to
        the same FROM object.  This is in contrast to the behavior of
        "auto-correlation" which only correlates to an immediate enclosing
        :class:`_expression.Select`.
        Multi-level correlation ensures that the link
        between enclosed and enclosing :class:`_expression.Select`
        is always via
        at least one WHERE/ORDER BY/HAVING/columns clause in order for
        correlation to take place.

        If ``None`` is passed, the :class:`_expression.Select`
        object will correlate
        none of its FROM entries, and all will render unconditionally
        in the local FROM clause.

        :param \*fromclauses: one or more :class:`.FromClause` or other
         FROM-compatible construct such as an ORM mapped entity to become part
         of the correlate collection; alternatively pass a single value
         ``None`` to remove all existing correlations.

        .. seealso::

            :meth:`_expression.Select.correlate_except`

            :ref:`tutorial_scalar_subquery`

        """

        # tests failing when we try to change how these
        # arguments are passed

        self._auto_correlate = False
        if not fromclauses or fromclauses[0] in {None, False}:
            if len(fromclauses) > 1:
                raise exc.ArgumentError(
                    "additional FROM objects not accepted when "
                    "passing None/False to correlate()"
                )
            self._correlate = ()
        else:
            self._correlate = self._correlate + tuple(
                coercions.expect(roles.FromClauseRole, f) for f in fromclauses
            )
        return self

    @_generative
    def correlate_except(
        self,
        *fromclauses: Union[Literal[None, False], _FromClauseArgument],
    ) -> Self:
        r"""Return a new :class:`_expression.Select`
        which will omit the given FROM
        clauses from the auto-correlation process.

        Calling :meth:`_expression.Select.correlate_except` turns off the
        :class:`_expression.Select` object's default behavior of
        "auto-correlation" for the given FROM elements.  An element
        specified here will unconditionally appear in the FROM list, while
        all other FROM elements remain subject to normal auto-correlation
        behaviors.

        If ``None`` is passed, or no arguments are passed,
        the :class:`_expression.Select` object will correlate all of its
        FROM entries.

        :param \*fromclauses: a list of one or more
         :class:`_expression.FromClause`
         constructs, or other compatible constructs (i.e. ORM-mapped
         classes) to become part of the correlate-exception collection.

        .. seealso::

            :meth:`_expression.Select.correlate`

            :ref:`tutorial_scalar_subquery`

        """

        self._auto_correlate = False
        if not fromclauses or fromclauses[0] in {None, False}:
            if len(fromclauses) > 1:
                raise exc.ArgumentError(
                    "additional FROM objects not accepted when "
                    "passing None/False to correlate_except()"
                )
            self._correlate_except = ()
        else:
            self._correlate_except = (self._correlate_except or ()) + tuple(
                coercions.expect(roles.FromClauseRole, f) for f in fromclauses
            )

        return self

    @HasMemoized_ro_memoized_attribute
    def selected_columns(
        self,
    ) -> ColumnCollection[str, ColumnElement[Any]]:
        """A :class:`_expression.ColumnCollection`
        representing the columns that
        this SELECT statement or similar construct returns in its result set,
        not including :class:`_sql.TextClause` constructs.

        This collection differs from the :attr:`_expression.FromClause.columns`
        collection of a :class:`_expression.FromClause` in that the columns
        within this collection cannot be directly nested inside another SELECT
        statement; a subquery must be applied first which provides for the
        necessary parenthesization required by SQL.

        For a :func:`_expression.select` construct, the collection here is
        exactly what would be rendered inside the "SELECT" statement, and the
        :class:`_expression.ColumnElement` objects are directly present as they
        were given, e.g.::

            col1 = column('q', Integer)
            col2 = column('p', Integer)
            stmt = select(col1, col2)

        Above, ``stmt.selected_columns`` would be a collection that contains
        the ``col1`` and ``col2`` objects directly. For a statement that is
        against a :class:`_schema.Table` or other
        :class:`_expression.FromClause`, the collection will use the
        :class:`_expression.ColumnElement` objects that are in the
        :attr:`_expression.FromClause.c` collection of the from element.

        A use case for the :attr:`_sql.Select.selected_columns` collection is
        to allow the existing columns to be referenced when adding additional
        criteria, e.g.::

            def filter_on_id(my_select, id):
                return my_select.where(my_select.selected_columns['id'] == id)

            stmt = select(MyModel)

            # adds "WHERE id=:param" to the statement
            stmt = filter_on_id(stmt, 42)

        .. note::

            The :attr:`_sql.Select.selected_columns` collection does not
            include expressions established in the columns clause using the
            :func:`_sql.text` construct; these are silently omitted from the
            collection. To use plain textual column expressions inside of a
            :class:`_sql.Select` construct, use the :func:`_sql.literal_column`
            construct.


        .. versionadded:: 1.4

        """

        # compare to SelectState._generate_columns_plus_names, which
        # generates the actual names used in the SELECT string.  that
        # method is more complex because it also renders columns that are
        # fully ambiguous, e.g. same column more than once.
        conv = cast(
            "Callable[[Any], str]",
            SelectState._column_naming_convention(self._label_style),
        )

        cc: ColumnCollection[str, ColumnElement[Any]] = ColumnCollection(
            [
                (conv(c), c)
                for c in self._all_selected_columns
                if is_column_element(c)
            ]
        )
        return cc.as_readonly()

    @HasMemoized_ro_memoized_attribute
    def _all_selected_columns(self) -> _SelectIterable:
        meth = SelectState.get_plugin_class(self).all_selected_columns
        return list(meth(self))

    def _ensure_disambiguated_names(self) -> Select[Any]:
        if self._label_style is LABEL_STYLE_NONE:
            self = self.set_label_style(LABEL_STYLE_DISAMBIGUATE_ONLY)
        return self

    def _generate_fromclause_column_proxies(
        self,
        subquery: FromClause,
        *,
        proxy_compound_columns: Optional[
            Iterable[Sequence[ColumnElement[Any]]]
        ] = None,
    ) -> None:
        """Generate column proxies to place in the exported ``.c``
        collection of a subquery."""

        if proxy_compound_columns:
            extra_col_iterator = proxy_compound_columns
            prox = [
                c._make_proxy(
                    subquery,
                    key=proxy_key,
                    name=required_label_name,
                    name_is_truncatable=True,
                    compound_select_cols=extra_cols,
                )
                for (
                    (
                        required_label_name,
                        proxy_key,
                        fallback_label_name,
                        c,
                        repeated,
                    ),
                    extra_cols,
                ) in (
                    zip(
                        self._generate_columns_plus_names(False),
                        extra_col_iterator,
                    )
                )
                if is_column_element(c)
            ]
        else:
            prox = [
                c._make_proxy(
                    subquery,
                    key=proxy_key,
                    name=required_label_name,
                    name_is_truncatable=True,
                )
                for (
                    required_label_name,
                    proxy_key,
                    fallback_label_name,
                    c,
                    repeated,
                ) in (self._generate_columns_plus_names(False))
                if is_column_element(c)
            ]

        subquery._columns._populate_separate_keys(prox)

    def _needs_parens_for_grouping(self) -> bool:
        return self._has_row_limiting_clause or bool(
            self._order_by_clause.clauses
        )

    def self_group(
        self, against: Optional[OperatorType] = None
    ) -> Union[SelectStatementGrouping[Self], Self]:
        ...
        """Return a 'grouping' construct as per the
        :class:`_expression.ClauseElement` specification.

        This produces an element that can be embedded in an expression. Note
        that this method is called automatically as needed when constructing
        expressions and should not require explicit use.

        """
        if (
            isinstance(against, CompoundSelect)
            and not self._needs_parens_for_grouping()
        ):
            return self
        else:
            return SelectStatementGrouping(self)

    def union(
        self, *other: _SelectStatementForCompoundArgument
    ) -> CompoundSelect:
        r"""Return a SQL ``UNION`` of this select() construct against
        the given selectables provided as positional arguments.

        :param \*other: one or more elements with which to create a
         UNION.

         .. versionchanged:: 1.4.28

            multiple elements are now accepted.

        :param \**kwargs: keyword arguments are forwarded to the constructor
         for the newly created :class:`_sql.CompoundSelect` object.

        """
        return CompoundSelect._create_union(self, *other)

    def union_all(
        self, *other: _SelectStatementForCompoundArgument
    ) -> CompoundSelect:
        r"""Return a SQL ``UNION ALL`` of this select() construct against
        the given selectables provided as positional arguments.

        :param \*other: one or more elements with which to create a
         UNION.

         .. versionchanged:: 1.4.28

            multiple elements are now accepted.

        :param \**kwargs: keyword arguments are forwarded to the constructor
         for the newly created :class:`_sql.CompoundSelect` object.

        """
        return CompoundSelect._create_union_all(self, *other)

    def except_(
        self, *other: _SelectStatementForCompoundArgument
    ) -> CompoundSelect:
        r"""Return a SQL ``EXCEPT`` of this select() construct against
        the given selectable provided as positional arguments.

        :param \*other: one or more elements with which to create a
         UNION.

         .. versionchanged:: 1.4.28

            multiple elements are now accepted.

        """
        return CompoundSelect._create_except(self, *other)

    def except_all(
        self, *other: _SelectStatementForCompoundArgument
    ) -> CompoundSelect:
        r"""Return a SQL ``EXCEPT ALL`` of this select() construct against
        the given selectables provided as positional arguments.

        :param \*other: one or more elements with which to create a
         UNION.

         .. versionchanged:: 1.4.28

            multiple elements are now accepted.

        """
        return CompoundSelect._create_except_all(self, *other)

    def intersect(
        self, *other: _SelectStatementForCompoundArgument
    ) -> CompoundSelect:
        r"""Return a SQL ``INTERSECT`` of this select() construct against
        the given selectables provided as positional arguments.

        :param \*other: one or more elements with which to create a
         UNION.

         .. versionchanged:: 1.4.28

            multiple elements are now accepted.

        :param \**kwargs: keyword arguments are forwarded to the constructor
         for the newly created :class:`_sql.CompoundSelect` object.

        """
        return CompoundSelect._create_intersect(self, *other)

    def intersect_all(
        self, *other: _SelectStatementForCompoundArgument
    ) -> CompoundSelect:
        r"""Return a SQL ``INTERSECT ALL`` of this select() construct
        against the given selectables provided as positional arguments.

        :param \*other: one or more elements with which to create a
         UNION.

         .. versionchanged:: 1.4.28

            multiple elements are now accepted.

        :param \**kwargs: keyword arguments are forwarded to the constructor
         for the newly created :class:`_sql.CompoundSelect` object.

        """
        return CompoundSelect._create_intersect_all(self, *other)


class ScalarSelect(
    roles.InElementRole, Generative, GroupedElement, ColumnElement[_T]
):
    """Represent a scalar subquery.


    A :class:`_sql.ScalarSelect` is created by invoking the
    :meth:`_sql.SelectBase.scalar_subquery` method.   The object
    then participates in other SQL expressions as a SQL column expression
    within the :class:`_sql.ColumnElement` hierarchy.

    .. seealso::

        :meth:`_sql.SelectBase.scalar_subquery`

        :ref:`tutorial_scalar_subquery` - in the 2.0 tutorial

    """

    _traverse_internals: _TraverseInternalsType = [
        ("element", InternalTraversal.dp_clauseelement),
        ("type", InternalTraversal.dp_type),
    ]

    _from_objects: List[FromClause] = []
    _is_from_container = True
    if not TYPE_CHECKING:
        _is_implicitly_boolean = False
    inherit_cache = True

    element: SelectBase

    def __init__(self, element: SelectBase) -> None:
        self.element = element
        self.type = element._scalar_type()
        self._propagate_attrs = element._propagate_attrs

    def __getattr__(self, attr: str) -> Any:
        return getattr(self.element, attr)

    def __getstate__(self) -> Dict[str, Any]:
        return {"element": self.element, "type": self.type}

    def __setstate__(self, state: Dict[str, Any]) -> None:
        self.element = state["element"]
        self.type = state["type"]

    @property
    def columns(self) -> NoReturn:
        raise exc.InvalidRequestError(
            "Scalar Select expression has no "
            "columns; use this object directly "
            "within a column-level expression."
        )

    c = columns

    @_generative
    def where(self, crit: _ColumnExpressionArgument[bool]) -> Self:
        """Apply a WHERE clause to the SELECT statement referred to
        by this :class:`_expression.ScalarSelect`.

        """
        self.element = cast("Select[Any]", self.element).where(crit)
        return self

    @overload
    def self_group(
        self: ScalarSelect[Any], against: Optional[OperatorType] = None
    ) -> ScalarSelect[Any]: ...

    @overload
    def self_group(
        self: ColumnElement[Any], against: Optional[OperatorType] = None
    ) -> ColumnElement[Any]: ...

    def self_group(
        self, against: Optional[OperatorType] = None
    ) -> ColumnElement[Any]:
        return self

    if TYPE_CHECKING:

        def _ungroup(self) -> Select[Any]: ...

    @_generative
    def correlate(
        self,
        *fromclauses: Union[Literal[None, False], _FromClauseArgument],
    ) -> Self:
        r"""Return a new :class:`_expression.ScalarSelect`
        which will correlate the given FROM
        clauses to that of an enclosing :class:`_expression.Select`.

        This method is mirrored from the :meth:`_sql.Select.correlate` method
        of the underlying :class:`_sql.Select`.  The method applies the
        :meth:_sql.Select.correlate` method, then returns a new
        :class:`_sql.ScalarSelect` against that statement.

        .. versionadded:: 1.4 Previously, the
           :meth:`_sql.ScalarSelect.correlate`
           method was only available from :class:`_sql.Select`.

        :param \*fromclauses: a list of one or more
         :class:`_expression.FromClause`
         constructs, or other compatible constructs (i.e. ORM-mapped
         classes) to become part of the correlate collection.

        .. seealso::

            :meth:`_expression.ScalarSelect.correlate_except`

            :ref:`tutorial_scalar_subquery` - in the 2.0 tutorial


        """
        self.element = cast("Select[Any]", self.element).correlate(
            *fromclauses
        )
        return self

    @_generative
    def correlate_except(
        self,
        *fromclauses: Union[Literal[None, False], _FromClauseArgument],
    ) -> Self:
        r"""Return a new :class:`_expression.ScalarSelect`
        which will omit the given FROM
        clauses from the auto-correlation process.

        This method is mirrored from the
        :meth:`_sql.Select.correlate_except` method of the underlying
        :class:`_sql.Select`.  The method applies the
        :meth:_sql.Select.correlate_except` method, then returns a new
        :class:`_sql.ScalarSelect` against that statement.

        .. versionadded:: 1.4 Previously, the
           :meth:`_sql.ScalarSelect.correlate_except`
           method was only available from :class:`_sql.Select`.

        :param \*fromclauses: a list of one or more
         :class:`_expression.FromClause`
         constructs, or other compatible constructs (i.e. ORM-mapped
         classes) to become part of the correlate-exception collection.

        .. seealso::

            :meth:`_expression.ScalarSelect.correlate`

            :ref:`tutorial_scalar_subquery` - in the 2.0 tutorial


        """

        self.element = cast("Select[Any]", self.element).correlate_except(
            *fromclauses
        )
        return self


class Exists(UnaryExpression[bool]):
    """Represent an ``EXISTS`` clause.

    See :func:`_sql.exists` for a description of usage.

    An ``EXISTS`` clause can also be constructed from a :func:`_sql.select`
    instance by calling :meth:`_sql.SelectBase.exists`.

    """

    inherit_cache = True
    element: Union[SelectStatementGrouping[Select[Any]], ScalarSelect[Any]]

    def __init__(
        self,
        __argument: Optional[
            Union[_ColumnsClauseArgument[Any], SelectBase, ScalarSelect[Any]]
        ] = None,
    ):
        s: ScalarSelect[Any]

        # TODO: this seems like we should be using coercions for this
        if __argument is None:
            s = Select(literal_column("*")).scalar_subquery()
        elif isinstance(__argument, SelectBase):
            s = __argument.scalar_subquery()
            s._propagate_attrs = __argument._propagate_attrs
        elif isinstance(__argument, ScalarSelect):
            s = __argument
        else:
            s = Select(__argument).scalar_subquery()

        UnaryExpression.__init__(
            self,
            s,
            operator=operators.exists,
            type_=type_api.BOOLEANTYPE,
            wraps_column_expression=True,
        )

    @util.ro_non_memoized_property
    def _from_objects(self) -> List[FromClause]:
        return []

    def _regroup(
        self, fn: Callable[[Select[Any]], Select[Any]]
    ) -> SelectStatementGrouping[Select[Any]]:
        element = self.element._ungroup()
        new_element = fn(element)

        return_value = new_element.self_group(against=operators.exists)
        assert isinstance(return_value, SelectStatementGrouping)
        return return_value

    def select(self) -> Select[Any]:
        r"""Return a SELECT of this :class:`_expression.Exists`.

        e.g.::

            stmt = exists(some_table.c.id).where(some_table.c.id == 5).select()

        This will produce a statement resembling::

            SELECT EXISTS (SELECT id FROM some_table WHERE some_table = :param) AS anon_1

        .. seealso::

            :func:`_expression.select` - general purpose
            method which allows for arbitrary column lists.

        """  # noqa

        return Select(self)

    def correlate(
        self,
        *fromclauses: Union[Literal[None, False], _FromClauseArgument],
    ) -> Self:
        """Apply correlation to the subquery noted by this
        :class:`_sql.Exists`.

        .. seealso::

            :meth:`_sql.ScalarSelect.correlate`

        """
        e = self._clone()
        e.element = self._regroup(
            lambda element: element.correlate(*fromclauses)
        )
        return e

    def correlate_except(
        self,
        *fromclauses: Union[Literal[None, False], _FromClauseArgument],
    ) -> Self:
        """Apply correlation to the subquery noted by this
        :class:`_sql.Exists`.

        .. seealso::

            :meth:`_sql.ScalarSelect.correlate_except`

        """

        e = self._clone()
        e.element = self._regroup(
            lambda element: element.correlate_except(*fromclauses)
        )
        return e

    def select_from(self, *froms: _FromClauseArgument) -> Self:
        """Return a new :class:`_expression.Exists` construct,
        applying the given
        expression to the :meth:`_expression.Select.select_from`
        method of the select
        statement contained.

        .. note:: it is typically preferable to build a :class:`_sql.Select`
           statement first, including the desired WHERE clause, then use the
           :meth:`_sql.SelectBase.exists` method to produce an
           :class:`_sql.Exists` object at once.

        """
        e = self._clone()
        e.element = self._regroup(lambda element: element.select_from(*froms))
        return e

    def where(self, *clause: _ColumnExpressionArgument[bool]) -> Self:
        """Return a new :func:`_expression.exists` construct with the
        given expression added to
        its WHERE clause, joined to the existing clause via AND, if any.


        .. note:: it is typically preferable to build a :class:`_sql.Select`
           statement first, including the desired WHERE clause, then use the
           :meth:`_sql.SelectBase.exists` method to produce an
           :class:`_sql.Exists` object at once.

        """
        e = self._clone()
        e.element = self._regroup(lambda element: element.where(*clause))
        return e


class TextualSelect(SelectBase, ExecutableReturnsRows, Generative):
    """Wrap a :class:`_expression.TextClause` construct within a
    :class:`_expression.SelectBase`
    interface.

    This allows the :class:`_expression.TextClause` object to gain a
    ``.c`` collection
    and other FROM-like capabilities such as
    :meth:`_expression.FromClause.alias`,
    :meth:`_expression.SelectBase.cte`, etc.

    The :class:`_expression.TextualSelect` construct is produced via the
    :meth:`_expression.TextClause.columns`
    method - see that method for details.

    .. versionchanged:: 1.4 the :class:`_expression.TextualSelect`
       class was renamed
       from ``TextAsFrom``, to more correctly suit its role as a
       SELECT-oriented object and not a FROM clause.

    .. seealso::

        :func:`_expression.text`

        :meth:`_expression.TextClause.columns` - primary creation interface.

    """

    __visit_name__ = "textual_select"

    _label_style = LABEL_STYLE_NONE

    _traverse_internals: _TraverseInternalsType = [
        ("element", InternalTraversal.dp_clauseelement),
        ("column_args", InternalTraversal.dp_clauseelement_list),
    ] + SupportsCloneAnnotations._clone_annotations_traverse_internals

    _is_textual = True

    is_text = True
    is_select = True

    def __init__(
        self,
        text: TextClause,
        columns: List[_ColumnExpressionArgument[Any]],
        positional: bool = False,
    ) -> None:
        self._init(
            text,
            # convert for ORM attributes->columns, etc
            [
                coercions.expect(roles.LabeledColumnExprRole, c)
                for c in columns
            ],
            positional,
        )

    def _init(
        self,
        text: TextClause,
        columns: List[NamedColumn[Any]],
        positional: bool = False,
    ) -> None:
        self.element = text
        self.column_args = columns
        self.positional = positional

    @HasMemoized_ro_memoized_attribute
    def selected_columns(
        self,
    ) -> ColumnCollection[str, KeyedColumnElement[Any]]:
        """A :class:`_expression.ColumnCollection`
        representing the columns that
        this SELECT statement or similar construct returns in its result set,
        not including :class:`_sql.TextClause` constructs.

        This collection differs from the :attr:`_expression.FromClause.columns`
        collection of a :class:`_expression.FromClause` in that the columns
        within this collection cannot be directly nested inside another SELECT
        statement; a subquery must be applied first which provides for the
        necessary parenthesization required by SQL.

        For a :class:`_expression.TextualSelect` construct, the collection
        contains the :class:`_expression.ColumnElement` objects that were
        passed to the constructor, typically via the
        :meth:`_expression.TextClause.columns` method.


        .. versionadded:: 1.4

        """
        return ColumnCollection(
            (c.key, c) for c in self.column_args
        ).as_readonly()

    @util.ro_non_memoized_property
    def _all_selected_columns(self) -> _SelectIterable:
        return self.column_args

    def set_label_style(self, style: SelectLabelStyle) -> TextualSelect:
        return self

    def _ensure_disambiguated_names(self) -> TextualSelect:
        return self

    @_generative
    def bindparams(
        self,
        *binds: BindParameter[Any],
        **bind_as_values: Any,
    ) -> Self:
        self.element = self.element.bindparams(*binds, **bind_as_values)
        return self

    def _generate_fromclause_column_proxies(
        self,
        fromclause: FromClause,
        *,
        proxy_compound_columns: Optional[
            Iterable[Sequence[ColumnElement[Any]]]
        ] = None,
    ) -> None:
        if TYPE_CHECKING:
            assert isinstance(fromclause, Subquery)

        if proxy_compound_columns:
            fromclause._columns._populate_separate_keys(
                c._make_proxy(fromclause, compound_select_cols=extra_cols)
                for c, extra_cols in zip(
                    self.column_args, proxy_compound_columns
                )
            )
        else:
            fromclause._columns._populate_separate_keys(
                c._make_proxy(fromclause) for c in self.column_args
            )

    def _scalar_type(self) -> Union[TypeEngine[Any], Any]:
        return self.column_args[0].type


TextAsFrom = TextualSelect
"""Backwards compatibility with the previous name"""


class AnnotatedFromClause(Annotated):
    def _copy_internals(self, **kw: Any) -> None:
        super()._copy_internals(**kw)
        if kw.get("ind_cols_on_fromclause", False):
            ee = self._Annotated__element  # type: ignore

            self.c = ee.__class__.c.fget(self)  # type: ignore

    @util.ro_memoized_property
    def c(self) -> ReadOnlyColumnCollection[str, KeyedColumnElement[Any]]:
        """proxy the .c collection of the underlying FromClause.

        Originally implemented in 2008 as a simple load of the .c collection
        when the annotated construct was created (see d3621ae961a), in modern
        SQLAlchemy versions this can be expensive for statements constructed
        with ORM aliases.   So for #8796 SQLAlchemy 2.0 we instead proxy
        it, which works just as well.

        Two different use cases seem to require the collection either copied
        from the underlying one, or unique to this AnnotatedFromClause.

        See test_selectable->test_annotated_corresponding_column

        """
        ee = self._Annotated__element  # type: ignore
        return ee.c  # type: ignore