summaryrefslogtreecommitdiff
path: root/src/Parser.hs
blob: 08914815d28586bf255ad9caba8a62a415daf795 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE LambdaCase #-}

module Parser where

import Control.Applicative
import qualified Data.Either.Combinators as E
import Data.Functor.Identity
import qualified Data.Set as S
import qualified Text.Parsec as Parsec

pparse ::
  Parsec.Stream s Data.Functor.Identity.Identity t =>
  Parsec.Parsec s () a ->
  s ->
  Either Parsec.ParseError a
pparse rule = Parsec.parse rule ""

type Parser a = Parsec.Parsec String () a

type Symbol = String

type Natural = Int

data Addend = Var Symbol | Con Natural deriving (Show, Eq, Ord)

data Quantifier = ForAll | Exists deriving (Show, Eq, Ord)

data Formula
  = Eq [Addend] [Addend]
  | Ne [Addend] [Addend]
  | GenLe [Addend] [Addend]
  | GenLt [Addend] [Addend]
  | Le Addend Addend
  | Lt Addend Addend
  | Not Formula
  | And Formula Formula
  | Or Formula Formula
  | Imp Formula Formula
  | Iff Formula Formula
  | Q Quantifier Symbol Formula
  deriving (Show)

pSymbol :: Parser Symbol
pSymbol = Parsec.many1 (Parsec.oneOf $ ['a' .. 'z'] ++ ['\''])

pNatural :: Parser Int
pNatural = read <$> Parsec.many1 Parsec.digit

pAddend :: Parser Addend
pAddend = Var <$> pSymbol <|> Con <$> pNatural

pTerm :: Parser [Addend]
pTerm = do
  c <- Parsec.option 1 pNatural
  a <- pSymbol
  return $ replicate (fromIntegral c) (Var a)

singleton :: a -> [a]
singleton a = [a]

pSums :: String -> ([Addend] -> [Addend] -> a) -> Parser a
pSums s op = do
  as <- f
  _ <- Parsec.string s
  bs <- f
  return $ op (concat as) (concat bs)
  where
    f =
      Parsec.sepBy1
        (Parsec.try pTerm <|> Parsec.try (singleton . Con <$> pNatural))
        (Parsec.char '+')

pMultiMatOp :: String -> (Formula -> Formula -> Formula) -> Parser Formula
pMultiMatOp s op = do
  term <- pFormulaInner
  _ <- Parsec.space *> Parsec.string s *> Parsec.space
  terms <-
    Parsec.sepBy1
      pFormulaInner
      (Parsec.space *> Parsec.string s *> Parsec.space)
  -- Imp is right-associative, whereas And/Or/Iff can be either, so
  -- use right-associative for everything.
  return $ foldr1 op (term : terms)

pNot :: Parser Formula
pNot = Not <$> (Parsec.char '~' *> pFormulaInner)

pQuantifier :: Parser Formula
pQuantifier = do
  q <- Parsec.oneOf ['A', 'E']
  c <- pSymbol
  Parsec.char '.'
  f <- pFormulaInner
  return $ Q (if q == 'A' then ForAll else Exists) c f

pFormulaInner :: Parser Formula
pFormulaInner =
  Parsec.try (pSums "=" Eq)
    <|> Parsec.try (pSums "!=" Ne)
    <|> Parsec.try (pSums "<=" GenLe)
    <|> Parsec.try (pSums "<" GenLt)
    <|> Parsec.try (pSums ">=" (flip GenLe))
    <|> Parsec.try (pSums ">" (flip GenLt))
    <|> Parsec.try pNot
    <|> Parsec.between
      (Parsec.char '(')
      (Parsec.char ')')
      ( Parsec.try (pMultiMatOp "&" And)
          <|> Parsec.try (pMultiMatOp "|" Or)
          <|> Parsec.try (pMultiMatOp "<->" Iff)
          <|> Parsec.try (pMultiMatOp "->" Imp)
      )
    <|> Parsec.try pQuantifier

pFormula :: Parser Formula
pFormula = do
  p <- pFormulaInner
  Parsec.eof
  return p

data Matrix
  = MEq [Addend] [Addend]
  | MLe Addend Addend
  | MLt Addend Addend
  | MNot Matrix
  | MAnd Matrix Matrix
  | MOr Matrix Matrix
  deriving (Eq, Show)

data MFormula = MFormula [(Quantifier, Symbol)] Matrix
  deriving (Eq, Show)

-- assumes simplified, pnf
split :: Formula -> MFormula
split (Q q v x) = let (MFormula p m) = split x in MFormula ((q, v) : p) m
split (Eq as bs) = MFormula [] (MEq as bs)
split (Le a b) = MFormula [] (MLe a b)
split (Lt a b) = MFormula [] (MLt a b)
split (Not x) = let MFormula [] x' = split x in MFormula [] (MNot x')
split (And x y) =
  let MFormula [] x' = split x
      MFormula [] y' = split y
   in MFormula [] (MAnd x' y')
split (Or x y) =
  let MFormula [] x' = split x
      MFormula [] y' = split y
   in MFormula [] (MOr x' y')

renameAddend :: (Symbol -> Symbol) -> Addend -> Addend
renameAddend f (Var x) = Var (f x)
renameAddend f x = x

-- TODO restrict type?
simplify :: Formula -> Formula
simplify x@(Eq as bs) = x
simplify (Ne as bs) = Not (Eq as bs)
simplify x@(Le a b) = x
simplify x@(Lt a b) = x
-- note: "V" will not appear in user input, as Symbol is over a-z
simplify (GenLe [a] [b]) = Le a b
simplify (GenLe as bs) = Q Exists "V" (Eq (Var "V" : as) bs)
simplify (GenLt [a] [b]) = Lt a b
simplify (GenLt as bs) = Q Exists "V" (Eq (Var "V" : Con 1 : as) bs)
simplify (Not x) = Not (simplify x)
simplify (And x y) = And (simplify x) (simplify y)
simplify (Or x y) = Or (simplify x) (simplify y)
simplify (Imp x y) = simplify (Or (Not x) y)
simplify (Iff x y) = simplify (And (Imp x y) (Imp y x))
simplify (Q q v f) = Q q v (simplify f)

prenex :: Formula -> Formula
prenex (Not x) = pull $ Not (prenex x)
prenex (And x y) = pull (And (prenex x) (prenex y))
prenex (Or x y) = pull (Or (prenex x) (prenex y))
prenex (Q q v x) = Q q v (prenex x)
prenex f = f

pull :: Formula -> Formula
pull (Not (Q ForAll x f)) = Q Exists x (pull (Not f))
pull (Not (Q Exists x f)) = Q ForAll x (pull (Not f))
pull (Not f) = Not f
pull (And (Q q v x) y) =
  let (v', x') = fixup v x y in Q q v' (pull (And x' y))
pull (And y (Q q v x)) =
  let (v', x') = fixup v x y in Q q v' (pull (And y x'))
pull (And x y) = And x y
pull (Or (Q q v x) y) = let (v', x') = fixup v x y in Q q v' (pull (Or x' y))
pull (Or y (Q q v x)) = let (v', x') = fixup v x y in Q q v' (pull (Or y x'))
pull (Or x y) = Or x y
pull x = x

newname :: Symbol -> [Symbol] -> Symbol
newname x seen = if x `elem` seen then newname (x <> "'") seen else x

rename :: (Symbol -> Symbol) -> Formula -> Formula
rename f (Eq as bs) = Eq (renameAddend f <$> as) (renameAddend f <$> bs)
rename f (Le a b) = Le (renameAddend f a) (renameAddend f b)
rename f (Lt a b) = Lt (renameAddend f a) (renameAddend f b)
rename f (Not x) = Not (rename f x)
rename f (And x y) = And (rename f x) (rename f y)
rename f (Or x y) = Or (rename f x) (rename f y)
rename f (Q q v x) = Q q (f v) (rename f x)

-- v is bound in x, other formula is y
-- if v is either bound or free in y, then rename v in x (avoiding collisions in x or y)
-- otherwise, leave as is
fixup :: Symbol -> Formula -> Formula -> (Symbol, Formula)
fixup v x y =
  let xvars = vars x
      yvars = vars y
      v' = if v `elem` yvars then newname v (xvars ++ yvars) else v
      x' = rename (\z -> if z == v then v' else z) x
   in (v', x')

vars :: Formula -> [Symbol]
vars (Eq as bs) = filtervars as ++ filtervars bs
vars (Le a b) = filtervars [a, b]
vars (Lt a b) = filtervars [a, b]
vars (Not x) = vars x
vars (And x y) = vars x ++ vars y
vars (Or x y) = vars x ++ vars y
vars (Q _ x f) = x : vars f

boundvars :: Formula -> [Symbol]
boundvars (Not x) = boundvars x
boundvars (And x y) = boundvars x ++ boundvars y
boundvars (Or x y) = boundvars x ++ boundvars y
boundvars (Q _ v f) = v : boundvars f
boundvars _ = []

filtervars :: [Addend] -> [Symbol]
filtervars =
  concatMap
    ( \case
        (Var x) -> [x]
        (Con _) -> []
    )

data QN = Qua (Quantifier, Symbol) | Neg deriving (Eq, Show)

data QNMFormula = QNMFormula [QN] Matrix
  deriving (Eq, Show)

eliminateUniversals :: [(Quantifier, Symbol)] -> [QN]
eliminateUniversals [] = []
eliminateUniversals ((q, v) : quas) =
  let ret = eliminateUniversals quas
      qua = Qua (Exists, v)
   in if q == ForAll then [Neg, qua, Neg] ++ ret else qua : ret

simplifyNegsQua :: [QN] -> [QN]
simplifyNegsQua [] = []
simplifyNegsQua (Neg : Neg : quas) = quas
simplifyNegsQua (qua : quas) = qua : simplifyNegsQua quas

simplifyNegs :: MFormula -> QNMFormula
simplifyNegs (MFormula quas m) =
  let quas' = (simplifyNegsQua . eliminateUniversals) quas
   in QNMFormula quas' m

anyUnboundVars :: Formula -> Bool
anyUnboundVars f =
  not $ S.null (S.fromList (vars f) S.\\ S.fromList (boundvars f))

parseMFormula :: String -> Either String QNMFormula
parseMFormula s = do
  formula <-
    E.mapLeft
      (flip (<>) "." . show)
      (prenex . simplify <$> pparse pFormula s)
  if anyUnboundVars formula
    then Left "All variables must be bound."
    else Right $ simplifyNegs $ split formula