summaryrefslogtreecommitdiff
path: root/src/Lib.hs
blob: 0e093e3279d1e7d1a3b7c0b96743bc75d74e6d9e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE BangPatterns #-}

module Lib where

import           Data.Char                      ( chr
                                                , ord
                                                )
import qualified Data.List                     as L
import qualified Data.Map                      as M
import           Data.Maybe                     ( fromJust )
import qualified Data.Set                      as S
import           Debug.Trace                    ( traceShowId
                                                , traceShow
                                                )
import           Parser
import qualified Text.Parsec                   as Parsec

mget :: (Ord a) => a -> M.Map a b -> b
mget a m = fromJust $ M.lookup a m

automatizem :: M.Map Addend Int -> Matrix -> DFA [Int] Int
automatizem dir (MEq as bs) =
  eq (fromIntegral $ length dir) (map (`mget` dir) as) (map (`mget` dir) bs)
automatizem dir (MLe  a b) = le (mget a dir) (mget b dir)
automatizem dir (MLt  a b) = lt (mget a dir) (mget b dir)
automatizem dir (MAnd x y) = conj (automatizem dir x) (automatizem dir y)
automatizem dir (MOr  x y) = disj (automatizem dir x) (automatizem dir y)
automatizem dir (MNot x  ) = compl (automatizem dir x)

automatize :: M.Map Addend Int -> QNMFormula -> NFA [Int] Int
automatize dir (QNMFormula [] m) =
  let dfa@( DFA s  _ _ _) = automatizem dir m
      mdfa@(DFA s' _ _ _) = rmdist dfa (fromIntegral (length dir))
      !t                  = (traceShowId $ (length s, length s'))
  in  minimize (fromIntegral $ length dir) $ nondeterminize $ mdfa
automatize dir (QNMFormula (Neg : quas) m) =
  let nfa = automatize dir (QNMFormula quas m)
  in  minimize (fromIntegral (length dir)) (ncompl nfa)
 where
  rmmin d = rmdist d (fromIntegral (length dir))
  ncompl = nondeterminize . compl . rmmin . determinize
automatize dir (QNMFormula (Qua (Exists, v) : quas) m) =
  let nfa = automatize dir (QNMFormula quas m)
  in  case M.lookup (Var v) dir of
        Nothing  -> nfa
        (Just i) -> minimize (fromIntegral $ length dir) $ existentialize i nfa

assign :: S.Set Addend -> M.Map Addend Int
assign xs = M.fromList (zip (S.toList xs) [0 ..])

collect :: Matrix -> S.Set Addend
collect (MEq  as bs) = S.fromList (as ++ bs)
collect (MLe  a  b ) = S.fromList [a, b]
collect (MLt  a  b ) = S.fromList [a, b]
collect (MAnd x  y ) = S.union (collect x) (collect y)
collect (MOr  x  y ) = S.union (collect x) (collect y)
collect (MNot x    ) = collect x

literals :: M.Map Addend Int -> [[Int]]
literals m =
  let
    addends          = L.sortOn snd (M.toList m)
    reversedLiterals = map (\(a, i) -> addendReverseBinary a) addends
    max              = L.maximum (map length reversedLiterals)
    paddedReversed =
      map (\x -> x ++ replicate (max - length x) 0) reversedLiterals
    padded = map reverse paddedReversed
  in
    L.transpose padded

addendReverseBinary :: Addend -> [Int]
addendReverseBinary (Var x) = []
addendReverseBinary (Con n) = reverseBinary n

reverseBinary :: Integer -> [Int]
reverseBinary 0 = []
reverseBinary n = fromIntegral (mod n 2) : reverseBinary (div n 2)

eval :: QNMFormula -> Bool
eval f@(QNMFormula q m) =
  let dir   = (assign $ collect m)
      nfa   = automatize dir f
      input = literals (assign $ collect m)
  in  runNFA nfa input

data State a = S a | Double (State a, State a) | Multi [State a] deriving (Eq, Ord, Show)

data DFA c a = DFA [State a] (State a) [State a] (State a -> c -> State a)

data NFA c a = NFA [State a] [State a] [State a] (State a -> c -> [State a])

runDFA :: (Ord a) => DFA c a -> [c] -> Bool
runDFA (DFA _ start accepts f) cs = foldl f start cs `elem` accepts

minimize :: (Ord a) => Integer -> NFA [Int] a -> NFA [Int] a
minimize n nfa@(NFA _ starts accepts f) = NFA states' starts' accepts' f
 where
  states'  = closure nfa (chars n) starts
  starts'  = starts `L.intersect` states'
  accepts' = accepts `L.intersect` states'


rmdist :: (Ord a, Show a) => DFA [Int] a -> Integer -> DFA [Int] a
rmdist dfa@(DFA states start accepts f) n =
  let
    statecandidates = minimize2 dfa n
    states'         = map head statecandidates
    start' = head $ head $ filter (\c -> L.elem start c) statecandidates
    accepts'        = L.intersect accepts states'
    f' s c =
      let s' = f s c
      in  head $ head $ filter (\c -> L.elem s' c) statecandidates
  in
    DFA states' start' accepts' f'


minimize2 :: (Ord a, Show a) => DFA [Int] a -> Integer -> [[State a]]
minimize2 dfa@(DFA states start accepts f) n =
  let p0 = [states L.\\ accepts, accepts] in minrec dfa n p0

minrec
  :: (Ord a, Show a) => DFA [Int] a -> Integer -> [[State a]] -> [[State a]]
minrec dfa n pklast =
  let next = concatMap (\part -> minimize3 dfa n pklast [] part) pklast
  in  if normpartition next == normpartition pklast
        then next
        else minrec dfa n next

normpartition :: Ord a => [[a]] -> S.Set (S.Set a)
normpartition xs = S.fromList (map S.fromList xs)


minimize3
  :: (Ord a, Show a)
  => DFA [Int] a
  -> Integer
  -> [[State a]]
  -> [[State a]]
  -> [State a]
  -> [[State a]]
minimize3 dfa@(DFA states starts accepts f) n pklast pk [] = pk
minimize3 dfa@(DFA states starts accepts f) n pklast [] (x : xs) =
  minimize3 dfa n pklast [[x]] xs
minimize3 dfa@(DFA states starts accepts f) n pklast pk (x : xs) =
  let ys = filter (\s -> equivall dfa pklast (chars n) (head s) x) pk
  in  if ys == []
        then minimize3 dfa n pklast ([x] : pk) xs
        else
          let coll  = (head ys)
              trunc = L.delete coll pk
              new   = x : coll
              pk'   = new : trunc
          in  minimize3 dfa n pklast pk' xs

equivall
  :: (Eq a)
  => DFA [Int] a
  -> [[State a]]
  -> [[Int]]
  -> (State a)
  -> (State a)
  -> Bool
equivall dfa partition cs x y = all (\c -> not $ dist dfa partition c x y) cs

states = S <$> [0, 1, 2, 3, 4]
start = S 0
accepts = [S 4]
f (S 0) [0] = S 1
f (S 0) [1] = S 2
f (S 1) [0] = S 1
f (S 1) [1] = S 3
f (S 2) [0] = S 1
f (S 2) [1] = S 2
f (S 3) [0] = S 1
f (S 3) [1] = S 4
f (S 4) [0] = S 1
f (S 4) [1] = S 2
dfa = DFA states start accepts f
p0 = [states L.\\ accepts, accepts]
p1 = concatMap (minimize3 dfa 1 p0 []) p0
p2 = concatMap (minimize3 dfa 1 p1 []) p1
minp = minimize2 dfa 1


dist
  :: (Eq a)
  => DFA [Int] a
  -> [[State a]]
  -> [Int]
  -> (State a)
  -> (State a)
  -> Bool
dist (DFA states starts accepts f) partition c x y =
  (findset partition (f x c)) /= (findset partition (f y c))

findset :: (Eq a) => [[State a]] -> State a -> [State a]
findset xs x = head (filter (\s -> L.elem x s) xs)

runNFA :: (Ord a) => NFA c a -> [c] -> Bool
runNFA (NFA _ starts accepts f) cs =
  foldl (\xs c -> L.nub $ concatMap (`f` c) xs) starts cs
    `L.intersect` accepts
    /=            []

reversal :: (Ord a) => NFA c a -> NFA c a
reversal (NFA states starts accepts f) = NFA states accepts starts f'
  where f' s c = filter (\state -> s `elem` f state c) states

eq :: Integer -> [Int] -> [Int] -> DFA [Int] Int
eq n is js = determinize $ minimize n $ reversal $ nondeterminize dfa
 where
  states   = S <$> [-(length js - 1) .. length is - 1 + 1]
  start    = S 0
  accepts  = [S 0]
  rejector = last states
  f :: State Int -> [Int] -> State Int
  f carrystate@(S carry) c = if carrystate == rejector
    then rejector
    else
      let si       = sum (map ((c) !!) (is))
          sj       = sum (map (c !!) (js))
          parityok = mod (carry + si) 2 == mod sj 2
          newcarry = div (carry + si - sj) 2
      in  if parityok then S newcarry else rejector
  dfa = DFA states start accepts f

le :: Int -> Int -> DFA [Int] Int
le = less LessEqual

lt :: Int -> Int -> DFA [Int] Int
lt = less LessThan

data LessType = LessEqual | LessThan deriving (Eq, Ord, Show)

less :: LessType -> Int -> Int -> DFA [Int] Int
less lt i j = DFA [S 0, S 1, S 2] (S 0) accepts f
 where
  accepts = if lt == LessEqual then [S 0, S 2] else [S 2]
  f s c = case (s, (c !! i, c !! j)) of
    (S 0, (1, 1)) -> S 0
    (S 0, (0, 0)) -> S 0
    (S 0, (1, 0)) -> S 1
    (S 0, _     ) -> S 2
    (S 1, _     ) -> S 1
    (_  , _     ) -> S 2

prod :: [a] -> [b] -> [(a, b)]
prod xs       [] = []
prod []       ys = []
prod (x : xs) ys = fmap (x, ) ys ++ prod xs ys

data JunctionType = Conj | Disj deriving (Eq, Ord, Show)

junction :: (Ord a) => JunctionType -> DFA c a -> DFA c a -> DFA c a
junction jt (DFA states1 start1 accepts1 f1) (DFA states2 start2 accepts2 f2) =
  DFA states' start' accepts' f'
 where
  newStates = prod states1 states2
  states'   = Double <$> newStates
  start'    = Double (start1, start2)
  accepts'  = if jt == Conj
    then Double <$> prod accepts1 accepts2
    else
      Double
        <$> filter (\(s, t) -> s `elem` accepts1 || t `elem` accepts2) newStates
  f' (Double (s, t)) c = Double (f1 s c, f2 t c)

conj :: (Ord a) => DFA c a -> DFA c a -> DFA c a
conj = junction Conj

disj :: (Ord a) => DFA c a -> DFA c a -> DFA c a
disj = junction Disj

compl :: (Ord a) => DFA c a -> DFA c a
compl (DFA states start accepts f) = DFA states start (states L.\\ accepts) f

nondeterminize :: (Ord a) => DFA c a -> NFA c a
nondeterminize (DFA states start accepts f) = NFA states [start] accepts f'
  where f' s c = [f s c]

change :: [a] -> Int -> a -> [a]
change xs idx b = take idx xs ++ [b] ++ drop (idx + 1) xs

closure :: (Ord a) => NFA c a -> [c] -> [State a] -> [State a]
closure nfa@(NFA states starts accepts f) cs initstates =
  let new = concatMap (\state -> concatMap (f state) cs) initstates
  in  if L.nub new L.\\ L.nub initstates /= []
        then closure nfa cs (L.nub $ new ++ initstates)
        else L.nub initstates

existentialize :: (Ord a) => Int -> NFA [Int] a -> NFA [Int] a
existentialize idx nfa@(NFA states starts accepts f) = NFA states
                                                           starts'
                                                           accepts
                                                           f'
 where
  zeroer  = replicate 50 0
  oneer   = change zeroer idx 1
  starts' = closure nfa [zeroer, oneer] starts
  f' s c = f s (change c idx 0) ++ f s (change c idx 1)

powerset :: [a] -> [[a]]
powerset []       = [[]]
powerset (x : xs) = let rest = powerset xs in map (x :) rest ++ rest

determinize :: (Ord a) => NFA c a -> DFA c a
determinize (NFA states start accepts f) = DFA states' start' accepts' f'
 where
  newStates = map L.sort $ powerset states
  states'   = Multi <$> newStates
  start'    = Multi $ L.sort start
  accepts' =
    Multi <$> filter (\state' -> state' `L.intersect` accepts /= []) newStates
  f' (Multi s) c = Multi $ L.nub $ L.sort $ concatMap (`f` c) s


chars :: Integer -> [[Int]]
chars 0 = [[]]
chars n = let r = chars (n - 1) in map (1 :) r ++ map (0 :) r