summaryrefslogtreecommitdiff
path: root/src/Lib.hs
blob: 7bd27d21380a10806b286ccc3c6c4b7654965537 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
{-# LANGUAGE TupleSections #-}

module Lib where

import qualified Data.List as L
import qualified Data.Map as M
import Data.Maybe (fromJust)
import qualified Data.Set as S
import Parser
  ( Addend (..),
    Matrix (..),
    QN (Neg, Qua),
    QNMFormula (..),
    Quantifier (Exists, ForAll),
  )

mget :: (Ord a) => a -> M.Map a b -> b
mget a m = fromJust $ M.lookup a m

automatizem :: M.Map Addend Int -> Matrix -> DFA [Int] Int
automatizem dir (MEq as bs) =
  eq (length dir) (map (`mget` dir) as) (map (`mget` dir) bs)
automatizem dir (MLe a b) = le (mget a dir) (mget b dir)
automatizem dir (MLt a b) = lt (mget a dir) (mget b dir)
automatizem dir (MAnd x y) = conj (automatizem dir x) (automatizem dir y)
automatizem dir (MOr x y) = disj (automatizem dir x) (automatizem dir y)
automatizem dir (MNot x) = compl (automatizem dir x)

automatize :: M.Map Addend Int -> QNMFormula -> NFA [Int] Int
automatize dir (QNMFormula [] m) =
  let dfa = automatizem dir m
      mdfa = minDistinguishability dfa (length dir)
   in minReachability (length dir) $ nondeterminize mdfa
automatize dir (QNMFormula (Neg : quas) m) =
  let nfa = automatize dir (QNMFormula quas m)
   in minReachability (length dir) (ncompl nfa)
  where
    md dfa = minDistinguishability dfa (length dir)
    ncompl = nondeterminize . compl . md . determinize
automatize dir (QNMFormula (Qua (Exists, v) : quas) m) =
  let nfa = automatize dir (QNMFormula quas m)
   in case M.lookup (Var v) dir of
        Nothing -> nfa
        (Just i) -> minReachability (length dir) $ existentialize i nfa
automatize _ (QNMFormula (Qua (ForAll, _) : _) _) =
  error "should be universal-free"

assign :: S.Set Addend -> M.Map Addend Int
assign xs = M.fromList (zip (S.toList xs) [0 ..])

collect :: Matrix -> S.Set Addend
collect (MEq as bs) = S.fromList (as ++ bs)
collect (MLe a b) = S.fromList [a, b]
collect (MLt a b) = S.fromList [a, b]
collect (MAnd x y) = S.union (collect x) (collect y)
collect (MOr x y) = S.union (collect x) (collect y)
collect (MNot x) = collect x

literals :: M.Map Addend Int -> [[Int]]
literals m =
  let addends = L.sortOn snd (M.toList m)
      reversedLiterals = map (\(a, _) -> addendReverseBinary a) addends
      padTo = L.maximum (map length reversedLiterals)
      paddedReversed =
        map (\x -> x ++ replicate (padTo - length x) 0) reversedLiterals
      padded = map reverse paddedReversed
   in L.transpose padded

addendReverseBinary :: Addend -> [Int]
addendReverseBinary (Var _) = []
addendReverseBinary (Con n) = reverseBinary n

reverseBinary :: Int -> [Int]
reverseBinary 0 = []
reverseBinary n = mod n 2 : reverseBinary (div n 2)

eval :: QNMFormula -> Bool
eval f@(QNMFormula _ m) =
  let dir = (assign $ collect m)
      nfa = automatize dir f
      input = literals (assign $ collect m)
   in runNFA nfa input

data State a = S a | Double (State a, State a) | Multi [State a] deriving (Eq, Ord, Show)

data DFA c a = DFA [State a] (State a) [State a] (State a -> c -> State a)

data NFA c a = NFA [State a] [State a] [State a] (State a -> c -> [State a])

runDFA :: (Ord a) => DFA c a -> [c] -> Bool
runDFA (DFA _ start accepts f) cs = foldl f start cs `elem` accepts

minReachability :: (Ord a) => Int -> NFA [Int] a -> NFA [Int] a
minReachability n nfa@(NFA _ starts accepts f) = NFA states' starts' accepts' f
  where
    states' = closure nfa (chars n) starts
    starts' = starts `L.intersect` states'
    accepts' = accepts `L.intersect` states'

minDistinguishability :: (Ord a, Show a) => DFA [Int] a -> Int -> DFA [Int] a
minDistinguishability dfa@(DFA _ start accepts f) n =
  let partition = hopcroftPartitionRefinement dfa n
      states' = map head partition
      start' = head $ head $ filter (L.elem start) partition
      accepts' = L.intersect accepts states'
      f' s c = let s' = f s c in head $ head $ filter (L.elem s') partition
   in DFA states' start' accepts' f'

hopcroftPartitionRefinement ::
  (Ord a, Show a) => DFA [Int] a -> Int -> [[State a]]
hopcroftPartitionRefinement (DFA states _ accepts f) n =
  let p0 = [states L.\\ accepts, accepts] in recurse p0
  where
    sigma = chars n
    normalizePartition partition = S.fromList (map S.fromList partition)
    findInPartition xs x = fromJust $ L.find (L.elem x) xs
    equalUnder partition x y =
      findInPartition partition x == findInPartition partition y
    indistinguishable partition x y =
      all (\c -> equalUnder partition (f x c) (f y c)) sigma
    partialRefine _ pk [] = pk
    partialRefine pkPrev [] (x : xs) = partialRefine pkPrev [[x]] xs
    partialRefine pkPrev pk (x : xs) =
      case filter (\s -> indistinguishable pkPrev (head s) x) pk of
        [] -> partialRefine pkPrev ([x] : pk) xs
        [match] -> partialRefine pkPrev ((x : match) : L.delete match pk) xs
        _ -> error "should be unreachable"
    recurse pkPrev =
      let pk = concatMap (partialRefine pkPrev []) pkPrev
       in if normalizePartition pk == normalizePartition pkPrev
            then pk
            else recurse pk

runNFA :: (Ord a) => NFA c a -> [c] -> Bool
runNFA (NFA _ starts accepts f) cs =
  foldl (\xs c -> L.nub $ concatMap (`f` c) xs) starts cs
    `L.intersect` accepts
    /= []

reversal :: (Ord a) => NFA c a -> NFA c a
reversal (NFA states starts accepts f) = NFA states accepts starts f'
  where
    f' s c = filter (\state -> s `elem` f state c) states

eq :: Int -> [Int] -> [Int] -> DFA [Int] Int
eq n is js = determinize $ minReachability n $ reversal $ nondeterminize dfa
  where
    states = S <$> [- (length js - 1) .. length is - 1 + 1]
    start = S 0
    accepts = [S 0]
    rejector = last states
    f :: State Int -> [Int] -> State Int
    f carrystate@(S carry) c =
      if carrystate == rejector
        then rejector
        else
          let si = sum (map (c !!) is)
              sj = sum (map (c !!) js)
              parityok = mod (carry + si) 2 == mod sj 2
              newcarry = div (carry + si - sj) 2
           in if parityok then S newcarry else rejector
    dfa = DFA states start accepts f

le :: Int -> Int -> DFA [Int] Int
le = less LessEqual

lt :: Int -> Int -> DFA [Int] Int
lt = less LessThan

data LessType = LessEqual | LessThan deriving (Eq, Ord, Show)

less :: LessType -> Int -> Int -> DFA [Int] Int
less op i j = DFA [S 0, S 1, S 2] (S 0) accepts f
  where
    accepts = if op == LessEqual then [S 0, S 2] else [S 2]
    f s c = case (s, (c !! i, c !! j)) of
      (S 0, (1, 1)) -> S 0
      (S 0, (0, 0)) -> S 0
      (S 0, (1, 0)) -> S 1
      (S 0, _) -> S 2
      (S 1, _) -> S 1
      (_, _) -> S 2

prod :: [a] -> [b] -> [(a, b)]
prod _ [] = []
prod [] _ = []
prod (x : xs) ys = fmap (x,) ys ++ prod xs ys

data JunctionType = Conj | Disj deriving (Eq, Ord, Show)

junction :: (Ord a) => JunctionType -> DFA c a -> DFA c a -> DFA c a
junction jt (DFA states1 start1 accepts1 f1) (DFA states2 start2 accepts2 f2) =
  DFA states' start' accepts' f'
  where
    newStates = prod states1 states2
    states' = Double <$> newStates
    start' = Double (start1, start2)
    accepts' =
      if jt == Conj
        then Double <$> prod accepts1 accepts2
        else
          Double
            <$> filter (\(s, t) -> s `elem` accepts1 || t `elem` accepts2) newStates
    f' (Double (s, t)) c = Double (f1 s c, f2 t c)

conj :: (Ord a) => DFA c a -> DFA c a -> DFA c a
conj = junction Conj

disj :: (Ord a) => DFA c a -> DFA c a -> DFA c a
disj = junction Disj

compl :: (Ord a) => DFA c a -> DFA c a
compl (DFA states start accepts f) = DFA states start (states L.\\ accepts) f

nondeterminize :: (Ord a) => DFA c a -> NFA c a
nondeterminize (DFA states start accepts f) = NFA states [start] accepts f'
  where
    f' s c = [f s c]

change :: [a] -> Int -> a -> [a]
change xs idx b = take idx xs ++ [b] ++ drop (idx + 1) xs

closure :: (Ord a) => NFA c a -> [c] -> [State a] -> [State a]
closure nfa@(NFA _ _ _ f) cs initstates =
  let new = concatMap (\state -> concatMap (f state) cs) initstates
   in if L.nub new L.\\ L.nub initstates /= []
        then closure nfa cs (L.nub $ new ++ initstates)
        else L.nub initstates

existentialize :: (Ord a) => Int -> NFA [Int] a -> NFA [Int] a
existentialize idx nfa@(NFA states starts accepts f) =
  NFA
    states
    starts'
    accepts
    f'
  where
    zeroer = replicate 50 0
    oneer = change zeroer idx 1
    starts' = closure nfa [zeroer, oneer] starts
    f' s c = f s (change c idx 0) ++ f s (change c idx 1)

powerset :: [a] -> [[a]]
powerset [] = [[]]
powerset (x : xs) = let rest = powerset xs in map (x :) rest ++ rest

determinize :: (Ord a) => NFA c a -> DFA c a
determinize (NFA states start accepts f) = DFA states' start' accepts' f'
  where
    newStates = map L.sort $ powerset states
    states' = Multi <$> newStates
    start' = Multi $ L.sort start
    accepts' =
      Multi <$> filter (\state' -> state' `L.intersect` accepts /= []) newStates
    f' (Multi s) c = Multi $ L.nub $ L.sort $ concatMap (`f` c) s

chars :: Int -> [[Int]]
chars 0 = [[]]
chars n = let r = chars (n - 1) in map (1 :) r ++ map (0 :) r