1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
|
from binascii import unhexlify
import random, struct, hmac, itertools, math
from Crypto.Cipher import AES
import cryptography
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
import numpy as np
import xarray as xr
## Computation in GF(2^128)/(x^128 + x^7 + x^2 + x^1 + 1)
## Elements are represented as an integer n where (n & (1 << i)) is the coefficient for x^i.
class X:
"""A helper class for specifying elements of GF(2^n)."""
def __pow__(self, y):
return 1 << y
x = X()
gcm_modulus = x**128 + x**7 + x**2 + x**1 + 1
gcm_modulus_degree = 128
def gf128_deg(x):
"""Compute the degree of x.
>>> assert gf128_deg(x**20 + x**5 + 1) == 20
>>> assert gf128_deg(x**90) == 90
>>> assert gf128_deg(x**1) == 1
>>> assert gf128_deg(1) == 0
>>> assert gf128_deg(0) == -1
"""
return x.bit_length() - 1
def gf128_add(a, b):
"""Compute a + b.
>>> assert gf128_add(0, 0) == 0
>>> assert gf128_add(x**7 + x**2, 0) == x**7 + x**2
>>> assert gf128_add(x**7 + x**2, x**2 + x**1) == x**7 + x**1
>>> assert gf128_add(x**7 + x**2, x**7 + x**2) == 0
"""
return a ^ b
def gf128_mul(a, b):
"""Compute ab.
>>> assert gf128_mul(x**20 + x**5 + 1, x**13 + x**2) == x**33 + x**22 + x**18 + x**13 + x**7 + x**2
>>> assert gf128_mul(x**80, x**90) == x**49 + x**44 + x**43 + x**42
>>> assert gf128_mul(x**23 + x**5, 1) == x**23 + x**5
"""
if a == 0 or b == 0:
return 0
if a > b:
return gf128_mul(b, a)
p = 0
deg_b = gf128_deg(b)
while a > 0:
if a & 1:
p ^= b
a = a >> 1
b = b << 1
deg_b += 1
if deg_b == gcm_modulus_degree:
b = b ^ gcm_modulus
deg_b = gf128_deg(b)
return p
def gf128_divmod(a, b):
"""Compute q, r such that a = qb + r; gf128_deg(r) < gf128_deg(b).
>>> assert gf128_divmod(x**20 + x**5 + 1, x**13 + x**2) == (x**7, x**9 + x**5 + 1)
>>> assert gf128_divmod(x**90, x**80) == (x**10, 0)
"""
q, r = 0, a
while gf128_deg(r) >= gf128_deg(b):
d = gf128_deg(r) - gf128_deg(b)
q = q ^ (1 << d)
r = r ^ (b << d)
return q, r
def gf128_mod(a, m=gcm_modulus):
"""Compute b such that a = b; gf128_deg(b) < gf128_deg(m).
>>> assert gf128_mod(x**220 + x**5 + 1, x**50 + x**4) == x**36 + x**5 + 1
>>> assert gf128_mod(x**130 + x**64 + x**2) == x**64 + x**9 + x**4 + x**3
"""
q, r = gf128_divmod(a, m)
return r
def gf128_egcd(a, b):
"""Compute g, x, y such that g | a, g | b, g = ax + by;
for any h such that h | a and h | b, gf128_deg(g) >= gf128_deg(h).
>>> assert gf128_egcd(x**2 + 1, x**1 + 1) == (x**1 + 1, 0, 1)
>>> assert gf128_egcd(x**12 + x**4, x**5 + 1) == (x**1 + 1, x**3 + x**2 + 1, x**10 + x**9 + x**7 + x**5 + x**4 + x**1 + 1)
>>> assert gf128_egcd(x**64 + x**2, x**37 + x**12 + 1) == (1, x**35 + x**34 + x**33 + x**31 + x**30 + x**28 + x**27 + x**25 + x**24 + x**21 + x**20 + x**18 + x**17 + x**15 + x**14 + x**12 + x**11 + x**9 + x**7 + x**6 + x**4 + x**3 + x**1 + 1, x**62 + x**61 + x**60 + x**58 + x**57 + x**55 + x**54 + x**52 + x**51 + x**48 + x**47 + x**45 + x**44 + x**42 + x**41 + x**39 + x**38 + x**37 + x**35 + x**34 + x**32 + x**31 + x**29 + x**28 + x**26 + x**25 + x**24 + x**22 + x**21 + x**19 + x**18 + x**16 + x**15 + x**13 + x**12 + x**11 + x**9 + x**8 + x**6 + x**5 + x**3 + x**2 + 1)
"""
orig_a = a
orig_b = b
a_x = 1
a_y = 0
b_x = 0
b_y = 1
# Invariant = a_x*x + a_y*y = a, b_x*x + b_y*y = b, r_x*r + r_y*y = r
r_x = 0
r_y = 1
if a == 0:
return b, r_x, r_y
while True:
q, r = gf128_divmod(b, a)
if r == 0:
# FIX mul so mod isn't necessary; with zeros
assert a == gf128_mod(gf128_add(gf128_mul(orig_a, r_x), gf128_mul(orig_b, r_y)))
return a, r_x, r_y
r_x = gf128_add(b_x, gf128_mul(q, a_x))
r_y = gf128_add(b_y, gf128_mul(q, a_y))
a, b = r, a
b_x, b_y = a_x, a_y
a_x, a_y = r_x, r_y
def gf128_inv(a):
"""Compute b such that ab = 1.
>>> assert gf128_inv(x**1) == x**127 + x**6 + x**1 + 1
>>> assert gf128_inv(x**4) == x**127 + x**125 + x**124 + x**6 + x**4 + x**3 + x**1 + 1
"""
g, xx, yy = gf128_egcd(a, gcm_modulus)
assert g == 1
return xx
def gf128_exp(a, n):
"""Compute a^n.
>>> assert gf128_exp(x**2 + 1, 0) == 1
>>> assert gf128_exp(x**2 + 1, 1) == x**2 + 1
>>> assert gf128_exp(x**2 + 1, 2) == x**4 + 1
>>> assert gf128_exp(x**2 + 1, 10) == x**20 + x**16 + x**4 + 1
"""
if n == 0:
return 1
rec = gf128_exp(a, n//2)
rec = gf128_mul(rec, rec)
if n % 2 == 1:
rec = gf128_mul(rec, a)
return rec
def gf128_sqrt(x):
"""Compute y such that y^2 = x: the inverse Frobenius automorphism.
Reference: https://math.stackexchange.com/questions/943417/square-root-for-galois-fields-gf2m
>>> assert gf128_sqrt(1) == 1
>>> assert gf128_sqrt(x**2 + 1) == x**1 + 1
>>> assert gf128_sqrt(x**3 + 1) == x**126 + x**123 + x**120 + x**117 + x**114 + x**111 + x**108 + x**105 + x**102 + x**99 + x**96 + x**93 + x**90 + x**87 + x**84 + x**81 + x**78 + x**75 + x**72 + x**69 + x**66 + x**63 + x**62 + x**60 + x**59 + x**57 + x**56 + x**54 + x**53 + x**51 + x**50 + x**48 + x**47 + x**45 + x**44 + x**42 + x**41 + x**39 + x**38 + x**36 + x**35 + x**33 + x**32 + x**30 + x**29 + x**27 + x**26 + x**24 + x**23 + x**21 + x**20 + x**18 + x**17 + x**15 + x**14 + x**12 + x**11 + x**9 + x**8 + x**6 + x**3 + 1
"""
return gf128_exp(x, 2**127)
def gf128_to_vec(x):
return [int(n) for n in bin(x)[2:].zfill(128)[::-1]]
def vec_to_gf128(vs):
x = 0
for i, v in enumerate(vs):
if v:
x += (1 << i)
return x
def reverse_mask(b):
# from https://stackoverflow.com/a/2602885
b = (b & 0xF0) >> 4 | (b & 0x0F) << 4;
b = (b & 0xCC) >> 2 | (b & 0x33) << 2;
b = (b & 0xAA) >> 1 | (b & 0x55) << 1;
return b;
def bytes_to_gf128(xs, st=None, en=None):
if st is None and en is None:
st = 0
en = 16
a, b = struct.unpack('<QQ', bytes(reverse_mask(xs[i]) for i in range(st, en)))
return a + (b << 64)
def gf128_to_bytes(n):
s = b''
while n != 0:
c = n & 0xff
f = 0
for i in range(8):
if c & (1 << i):
f += (1 << (7-i))
s += int.to_bytes(f, 1, 'big')
n >>= 8
s += b'\x00' * (16 - len(s))
assert len(s) == 16
return s
def Ms():
vs = []
for i in range(0, 128):
v = gf128_to_vec(gf128_mod(1 << (2*i)))
vs.append(v)
return np.array(vs).transpose()
def Mc(c):
vs = []
pr = c
for i in range(0, 128):
vs.append(gf128_to_vec(pr))
pr = gf128_mul(x**1, pr)
return np.array(vs).transpose()
# Adapted from Wiki
def rref_mod_2(M):
M = M.copy().astype('int')
lead = 0
rowCount, columnCount = M.shape
adj = np.eye(rowCount, rowCount).astype('int')
for r in range(rowCount):
if columnCount <= lead:
return M, adj
i = r
while M[i][lead] == 0:
i = i + 1
if rowCount == i:
i = r
lead = lead + 1
if columnCount == lead:
return M, adj
if i != r:
M[[i, r]] = M[[r, i]]
adj[[i, r]] = adj[[r, i]]
for j in range(rowCount):
if M[j][lead] == 1 and j != r:
M[j] ^= M[r]
adj[j] ^= adj[r]
lead = lead + 1
return M, adj
def kernel(M, f):
mt = M.transpose()
N, adj = f(mt)
basis = []
for i, row in enumerate(N):
if np.all(np.isclose(row, 0)):
basis.append(adj[i])
return N, adj, basis
## Computation in GF(2^128)[X]/(x^128 + x^7 + x^2 + x^1 + 1)
## Elements are represented as arrays where the ith element is the coefficient for x^i.
def gf128poly_lead(x):
"""Compute the leading coefficient of x.
>>> assert gf128poly_lead([x**3, x**1, 1]) == 1
>>> assert gf128poly_lead([x**3, x**1, x**2, x**4]) == x**4
>>> assert gf128poly_lead([1]) == 1
"""
assert len(x) > 0
return x[-1]
def collapse(x):
if len(x) == 0:
return []
if gf128poly_lead(x) == 0:
return collapse(x[:-1])
return [gf128_mod(y, gcm_modulus) for y in x]
def gf128poly_deg(x):
"""Compute the degree of x.
>>> assert gf128poly_deg([x**3, x**1, 1]) == 2
>>> assert gf128poly_deg([x**2, x**3]) == 1
>>> assert gf128poly_deg([x**15]) == 0
>>> assert gf128poly_deg([1]) == 0
>>> assert gf128poly_deg([]) == -1
"""
return len(x) - 1
def gf128poly_add(a, b):
"""Compute a + b.
>>> assert gf128poly_add([x**3, x**1, 1], [x**2 + 1, x**3]) == [x**3 + x**2 + 1, x**1 + x**3, 1]
>>> assert gf128poly_add([x**2, x**3], [x**5, x**12, x**2, x**4]) == [x**5 + x**2, x**12 + x**3, x**2, x**4]
>>> assert gf128poly_add([x**15], []) == [x**15]
>>> assert gf128poly_add([x**15], [x**15]) == []
"""
return collapse([gf128_add(x, y) for x, y in itertools.zip_longest(a, b, fillvalue=0)])
def gf128poly_mul(a, b):
"""Compute ab.
>>> assert gf128poly_mul([x**3, x**1, 1], [x**2 + 1, x**3]) == [x**5 + x**3, x**6 + x**3 + x**1, x**4 + x**2 + 1, x**3]
>>> assert gf128poly_mul([x**2, x**3], [x**5, x**12, x**2, x**4]) == [x**7, x**14 + x**8, x**15 + x**4, x**6 + x**5, x**7]
>>> assert gf128poly_mul([x**15], []) == []
>>> assert gf128poly_mul([x**15], [1]) == [x**15]
>>> assert gf128poly_mul([0, x**15], [0, x**15]) == [0, 0, x**30]
>>> assert gf128poly_mul([x**70], [1, x**70, 1]) == [x**70, x**19 + x**14 + x**13 + x**12, x**70]
"""
p = []
while gf128poly_deg(a) >= 0:
p = gf128poly_add(p, [gf128_mul(x, a[0]) for x in b])
a = a[1:]
b = [0] + b
return collapse(p)
def gf128poly_divmod(a, b):
"""Compute q, r such that a = qb + r; gf128poly_deg(r) < gf128poly_deg(b).
>>> assert gf128poly_divmod([x**5 + x**3, x**6 + x**3 + x**1, x**4 + x**2 + 1, x**3], [x**2 + 1, x**3]) == ([x**3, x**1, 1], [])
>>> assert gf128poly_divmod([x**7, x**14 + x**8, x**15 + x**4, x**6 + x**5, x**7], [x**2, x**3]) == ([x**5, x**12, x**2, x**4], [])
>>> assert gf128poly_divmod([x**15], [1]) == ([x**15], [])
>>> assert gf128poly_divmod([x**15], [x**15]) == ([1], [])
>>> assert gf128poly_divmod([0, 0, x**30], [0, x**15]) == ([0, x**15], [])
>>> assert gf128poly_divmod([x**70, x**19 + x**14 + x**13 + x**12, x**70], [1, x**70, 1]) == ([x**70], [])
>>> assert gf128poly_divmod([x**18, x**18, x**3], [x**3, x**3]) == ([x**15 + 1, 1], [x**3])
"""
assert b != [], 'divide by zero'
q = []
while gf128poly_deg(a) >= gf128poly_deg(b):
highA = gf128poly_lead(a)
highB = gf128poly_lead(b)
highBinv = 1 if highB == 1 else gf128_inv(highB)
qq = gf128_mul(highA, highBinv)
de = gf128poly_deg(a) - gf128poly_deg(b)
new_term = [0]*(de+1)
new_term[de] = qq
q = gf128poly_add(q, new_term)
fact = gf128poly_mul(b, new_term)
a = gf128poly_add(a, fact)
return collapse(q), collapse(a)
def gf128poly_sqrt(p):
"""Compute q such that q^2 = p for p such that p' = 0.
>>> assert gf128poly_sqrt([1, 0, 1, 0, 1, 0, 1]) == [1, 1, 1, 1]
>>> assert gf128poly_sqrt([1, 0, 1, 0, 0, 0, 1]) == [1, 1, 0, 1]
>>> assert gf128poly_sqrt([1, 0, x**4]) == [1, x**2]
>>> assert gf128poly_sqrt([1, 0, x**3]) == [1, x**126 + x**123 + x**120 + x**117 + x**114 + x**111 + x**108 + x**105 + x**102 + x**99 + x**96 + x**93 + x**90 + x**87 + x**84 + x**81 + x**78 + x**75 + x**72 + x**69 + x**66 + x**63 + x**62 + x**60 + x**59 + x**57 + x**56 + x**54 + x**53 + x**51 + x**50 + x**48 + x**47 + x**45 + x**44 + x**42 + x**41 + x**39 + x**38 + x**36 + x**35 + x**33 + x**32 + x**30 + x**29 + x**27 + x**26 + x**24 + x**23 + x**21 + x**20 + x**18 + x**17 + x**15 + x**14 + x**12 + x**11 + x**9 + x**8 + x**6 + x**3]
"""
assert gf128poly_formal_derivative(p) == []
q = []
for x in p:
if x == 0 or x == 1:
q.append(x)
else:
q.append(gf128_sqrt(x))
for i in range(2, len(q), 2):
q[i//2] = q[i]
q[i] = 0
return collapse(q)
def gf128poly_monic(p):
"""Compute p/p_lead for p such that gf128poly_deg(p) >= 0.
>>> assert gf128poly_monic([x**54, x**2]) == [x**52, 1]
>>> assert gf128poly_monic([x**2, x**3]) == [x**127 + x**6 + x**1 + 1, 1]
"""
assert len(p) > 0
lead = gf128poly_lead(p)
if lead == 1:
return p
lead_inv = gf128_inv(lead)
return [gf128_mul(x, lead_inv) for x in p]
def gf128poly_formal_derivative(p):
"""Compute p'.
>>> assert gf128poly_formal_derivative([]) == []
>>> assert gf128poly_formal_derivative([x**25]) == []
>>> assert gf128poly_formal_derivative([x**25, x**3 + x**1, x**10, x**7]) == [x**3 + x**1, 0, x**7]
"""
q = []
for i, x in enumerate(p):
if i == 0:
continue
if i % 2 == 0:
e = 0
else:
e = x
q.append(e)
return collapse(q)
def gf128poly_modexp(a, n, m):
"""Compute a^n (mod m).
>>> assert gf128poly_modexp([x**2, x**3, x**4], 0, [x**3, x**2, 1]) == [1]
>>> assert gf128poly_modexp([x**2, x**3, x**4], 1, [x**3, x**2, 1, x**5]) == [x**2, x**3, x**4]
>>> assert gf128poly_modexp([x**2, x**3, x**4], 5, [x**3, x**2, 1]) == [x**39 + x**38 + x**37 + x**36 + x**35 + x**33 + x**32 + x**30 + x**27 + x**26 + x**25 + x**24 + x**21 + x**20 + x**15 + x**10, x**38 + x**36 + x**35 + x**33 + x**32 + x**31 + x**26 + x**24 + x**23 + x**22 + x**21 + x**20 + x**14 + x**11]
"""
def modmul(a, b, m):
q, r = gf128poly_divmod(gf128poly_mul(a, b), m)
return r
if n == 0:
return [1]
rec = gf128poly_modexp(a, n//2, m)
rec = modmul(rec, rec, m)
if n % 2 == 1:
rec = modmul(rec, a, m)
return rec
def gf128poly_monic_gcd(a, b):
"""Compute g such that g | a, g | b, gf128poly_lead(g) = 1;
for any h such that h | a and h | b, gf128poly_deg(g) >= gf128poly_deg(h).
>>> assert gf128poly_monic_gcd([x**3, x**2, x**4], [x**3, x**2, x**4]) == [x**127 + x**6 + x**1 + 1, x**127 + x**126 + x**6 + x**5 + x**1, 1]
>>> assert gf128poly_monic_gcd([1], [1]) == [1]
>>> assert gf128poly_monic_gcd([x**5 + x**2], []) == [x**5 + x**2]
>>> assert gf128poly_monic_gcd([x**3, 0, 0, x**6], [x**3, x**8 + x**4, x**9 + x**7, x**8]) == [x**127 + x**6 + x**1 + 1, 1]
"""
assert gf128poly_deg(a) >= 0 or gf128poly_deg(b) >= 0
if gf128poly_deg(a) < 0:
return b
if gf128poly_deg(b) < 0:
return a
q, r = gf128poly_divmod(b, a)
ret = gf128poly_monic_gcd(r, a)
return gf128poly_monic(ret)
def gf128poly_square_free_factorization(f):
"""Compute the square-free factorization of a monic polynomial f.
Reference: https://en.wikipedia.org/wiki/Factorization_of_polynomials_over_finite_fields#Square-free_factorization
>>> a = [x**1, x**2, 1]
>>> b = [x**2, x**3+1, 1]
>>> c = [x**3, x**4, x**5, 1]
>>> asq = gf128poly_mul(a, a)
>>> acb = gf128poly_mul(asq, a)
>>> bsq = gf128poly_mul(b, b)
>>> acbbsq = gf128poly_mul(acb, bsq)
>>> p = gf128poly_mul(acbbsq, c)
>>> assert gf128poly_square_free_factorization([1]) == [([1], 1)]
>>> assert gf128poly_square_free_factorization(p) == [([x**3, x**4, x**5, 1], 1), ([x**1, x**2, 1], 3), ([x**2, x**3 + 1, 1], 2)]
"""
R = []
assert f[-1] == 1, 'monic'
if f == [1]:
return [([1], 1)]
fprime = gf128poly_formal_derivative(f)
c = gf128poly_monic_gcd(f, fprime)
w, r = gf128poly_divmod(f, c)
assert r == []
i = 1
while w != [1]:
y = gf128poly_monic_gcd(w, c)
fac, r = gf128poly_divmod(w, y)
assert r == []
R.append((fac, i))
w = y
c, r = gf128poly_divmod(c, y)
assert r == []
i = i + 1
if c != [1]:
c = gf128poly_sqrt(c)
c = gf128poly_monic(c)
Rrec = gf128poly_square_free_factorization(c)
R += [(fac, i*2) for (fac, i) in Rrec]
return [(fac, mult) for fac, mult in R if fac != [1]]
def gf128poly_distinct_degree_factorization(f):
"""Compute the distinct-degree factorization of a square-free monic polynomial f.
Reference: https://en.wikipedia.org/wiki/Factorization_of_polynomials_over_finite_fields#Distinct-degree_factorization
>>> a = [x**1, 1]
>>> b = [x**2, 1]
>>> ab = gf128poly_mul(a, b)
>>> assert gf128poly_distinct_degree_factorization(ab) == {((x**3, x**2 + x**1, 1), 1)}
"""
i = 1
S = set()
f_ = f.copy()
while gf128poly_deg(f_) >= 2*i:
qq = gf128poly_modexp([0, 1], 2**(128*i), f_)
qq = gf128poly_add(qq, [0, 1])
g = gf128poly_monic_gcd(f_, qq)
if g != [1]:
S.add((tuple(g), i))
q, r = gf128poly_divmod(f_, g)
assert r == []
f_ = q
i += 1
if f_ != [1]:
S.add((tuple(f_), gf128poly_deg(f_)))
if len(S) == 0:
return {(tuple(f), 1)}
else:
return S
def gf128poly_equal_degree_factorization(f, d):
"""Compute the equal-degree factorization of a square-free monic polynomial f whose factors are all of degree d.
Uses the Cantor-Zassenhaus algorithm.
Reference: https://en.wikipedia.org/wiki/Factorization_of_polynomials_over_finite_fields#Equal-degree_factorization
>>> a = [x**1, 1]
>>> b = [x**2, 1]
>>> ab = gf128poly_mul(a, b)
>>> assert gf128poly_equal_degree_factorization(ab, 1) == {(x**2, 1), (x**1, 1)}
"""
def gf128_rand():
return random.randint(0, 2**128-1)
def gf128poly_rand(degree):
return [gf128_rand() for _ in range(degree+1)]
exp = (2**128-1)//3
n = gf128poly_deg(f)
r = n//d
S = {tuple(f)}
while len(S) < r:
h = gf128poly_rand(n - 1)
g = gf128poly_monic_gcd(h, f)
if g == [1]:
g = gf128poly_add(gf128poly_modexp(h, exp, f), [1])
for u in list(S):
u = list(u)
if gf128poly_deg(u) == d:
continue
gugcd = gf128poly_monic_gcd(g, u)
if gugcd != [1] and gugcd != u:
S.remove(tuple(u))
S.add(tuple(gugcd))
qq, rr = gf128poly_divmod(u, gugcd)
assert rr == []
S.add(tuple(qq))
return S
def gf128poly_factorize(f, degree=None):
"""Compute the factors of a polynomial f. Does not return multiplicity.
If degree is specified, only returns factors of that degree.
"""
factors = set()
f = gf128poly_monic(f)
fs = gf128poly_square_free_factorization(f)
for p, _ in fs:
qs = gf128poly_distinct_degree_factorization(p)
for q, d in qs:
if degree is not None and d != degree:
continue
rs = gf128poly_equal_degree_factorization(list(q), d)
factors |= rs
return factors
## AES-GCM
def pad(xs):
return xs + b'\x00' * ((16 - len(xs)) % 16)
def build_blocks(aad, c):
padded_aad = pad(aad)
padded_c = pad(c)
length = struct.pack('>QQ', len(aad)*8, len(c)*8)
return padded_aad + padded_c + length
def gmac(h, s, aad, c):
blocks = build_blocks(aad, c)
g = 0
for i in range(len(blocks)//16):
block = bytes_to_gf128(blocks, i*16, (i + 1)*16)
g = gf128_add(g, block)
g = gf128_mul(g, h)
t = gf128_add(g, s)
return gf128_to_bytes(t)
def ecb_encrypt(key, xs):
c = AES.new(key, AES.MODE_ECB)
return c.encrypt(xs)
def xor(a, b):
return bytes([(x^y) for (x, y) in zip(a, b)])
def gctr(k, nonce, x):
y = b''
ctr = (int.from_bytes(nonce, 'big') << 32) + 2
i = 0
while len(y) < len(x):
y += xor(x[i*16:(i + 1)*16], ecb_encrypt(k, ctr.to_bytes(16, 'big')))
ctr += 1
i += 1
return y
def authentication_key(k):
return bytes_to_gf128(ecb_encrypt(k, b'\x00'*16))
def blind(k, nonce):
return bytes_to_gf128(ecb_encrypt(k, nonce + b'\x00\x00\x00\x01'))
def gcm_encrypt(k, nonce, aad, m, mac_bytes=16):
c = gctr(k, nonce, m)
mac = gmac(authentication_key(k), blind(k, nonce), aad, c)
return c, mac[:mac_bytes]
def gcm_decrypt(k, nonce, aad, c, mac, mac_bytes=16):
m = gctr(k, nonce, c)
expected_mac = gmac(authentication_key(k), blind(k, nonce), aad, c)[:mac_bytes]
assert hmac.compare_digest(mac, expected_mac)
return m
## Forbidden Attack
def compute_forbidden_polynomial(aad1, aad2, c1, c2, mac1, mac2):
bs1 = build_blocks(aad1, c1)
bs2 = build_blocks(aad2, c2)
if len(bs1) < len(bs2):
bs1 = b'\x00'*(len(bs2)-len(bs1)) + bs1
else:
bs2 = b'\x00'*(len(bs1)-len(bs2)) + bs2
assert len(bs1) == len(bs2)
f = []
N = len(bs1)//16
for i in range(N):
b1 = bytes_to_gf128(bs1[i*16:(i+1)*16])
b2 = bytes_to_gf128(bs2[i*16:(i+1)*16])
f.append(gf128_add(b1, b2))
f.append(gf128_add(bytes_to_gf128(mac1), bytes_to_gf128(mac2)))
return collapse(list(reversed(f)))
def nonce_reuse_recover_secrets(nonce, aad1, aad2, c1, c2, mac1, mac2):
f = compute_forbidden_polynomial(aad1, aad2, c1, c2, mac1, mac2)
factors = gf128poly_factorize(f, degree=1)
secrets = []
for factor in factors:
if gf128poly_deg(factor) == 1:
h = factor[0]
zero_tag = gmac(h, 0, aad1, c1)
s = gf128_add(bytes_to_gf128(mac1), bytes_to_gf128(zero_tag))
secrets.append((h, s))
return secrets
## MAC Truncation Attack
def gen_blocks(n, js):
blocks = b'\x00'*16*n
for j in js:
whichbyte = j // 8
whichbit = j % 8
newbyte = blocks[whichbyte] ^ (1 << (7-whichbit))
blocks = blocks[:whichbyte] + bytes([newbyte]) + blocks[whichbyte+1:]
return blocks
squarer = np.array(Ms())
use_numpy = True
if use_numpy:
mcsqlookup = np.load(open('square-basis.np', 'rb'))
else:
mcsqlookup = xr.open_dataarray('square-basis.nc')
def mc_squared(c, j):
return sum(mcsqlookup[i, j] if use_numpy else mcsqlookup[i, j].to_numpy() for i in range(128) if 1 == (c >> i) & 1) % 2
def gen_ad(blocks):
matret = np.zeros((128, 128))
for i in range(len(blocks)//16):
block = blocks[(i*16):(i+1)*16]
if block == b'\x00'*16:
continue
j = i + 1 # first is taken up by length block
mat = None
d = bytes_to_gf128(block)
try:
mat = mc_squared(d, j)
except IndexError:
matsq = np.linalg.matrix_power(squarer, j) % 2
mat = Mc(d) @ matsq
matret += mat
return matret % 2 # Because the elements of Ad are in GF2 we can mod 2
def gen_t(n, macbytes, X=None, minrows=8):
T = []
for j in range(n*128):
blocks = gen_blocks(n, [j])
Ad = gen_ad(blocks)
if X is not None:
rows = min((n*128)//(X.shape[1]) - 1, macbytes*8-minrows)
else:
rows = min((n*128)//(Ad.shape[1]) - 1, macbytes*8-minrows)
if X is not None:
Ad = (Ad[:rows] @ X) % 2
z = np.concatenate(Ad[:rows])
T.append(z)
return (np.array(T)).transpose().astype('int')
def gen_flips(b):
return np.nonzero(b)[0]
def compute_n(ct):
num_blocks = len(ct)//16
ns = [1] # 1-indexed
while (ns[-1]*2)<=(num_blocks):
ns.append(2*ns[-1])
ns = [n-1 for n in ns] # 0-indexed into c
n = len(ns) - 1
return n
def chunk(xs, n=16):
return [xs[i*n:(i+1)*n] for i in range(len(xs)//16)]
def find_b(n, basis, ct, mac, nonce, aad, oracle):
orig_base = bytearray(ct).copy()
base = bytearray(ct)
idx = 0
while True:
choice = random.sample(basis, random.randint(1, 10))
b = sum(choice) % 2
flips = gen_flips(b)
blocks = gen_blocks(n, flips)
for i, block in enumerate(chunk(blocks)):
j = (len(base)//16)-(2**(i+1)-1)
base[j*16:(j+1)*16] = xor(base[j*16:(j+1)*16], block)
try:
oracle(base[len(aad):], base[:len(aad)], mac, nonce)
return b
except (cryptography.exceptions.InvalidTag, ValueError):
base = orig_base.copy()
idx += 1
def mac_truncation_recover_secrets(ct, mac, nonce, mac_bytes, aad, oracle, compute_T_once=False):
orig_ct = ct
ct = aad + ct
n = compute_n(ct)
assert n > (mac_bytes*8//2)
assert len(ct) % 16 == 0
assert len(aad) % 16 == 0
X = None
K = None
basisKerK = None
if compute_T_once:
T = gen_t(n, mac_bytes, X, minrows=7)
_, _, basisKerT = kernel(T, rref_mod_2)
while K is None or (basisKerK is None or len(basisKerK) > 1):
if not compute_T_once:
T = gen_t(n, mac_bytes, X, minrows=7)
_, _, basisKerT = kernel(T, rref_mod_2)
assert len(basisKerT[0]) == n*128
b = find_b(n, basisKerT, ct, mac, nonce, aad, oracle)
flips = gen_flips(b)
blocks = gen_blocks(n, flips)
Ad = gen_ad(blocks)
if X is not None:
AdRelevant = ((Ad @ X) % 2)[:mac_bytes*8]
else:
AdRelevant = Ad[:mac_bytes*8]
incrK = Ad[:mac_bytes*8][np.any(AdRelevant, axis=1)]
if K is None:
K = incrK
else:
K = np.concatenate([K, incrK])
_, _, basisKerK = kernel(K, rref_mod_2)
if not compute_T_once:
X = np.array(basisKerK).transpose()
_, _, kerK = kernel(K, rref_mod_2)
assert len(kerK) == 1, len(kerK)
h = kerK[0]
zero_tag = gf128_to_vec(bytes_to_gf128(gmac(vec_to_gf128(h), 0, aad, orig_ct)))[:mac_bytes*8]
gf128_mac = 0
i = 0
for b in mac:
for j in range(8):
if b & (1 << (7-j)):
gf128_mac += (1<<i)
i += 1
def small_gf128_to_vec(x):
return [int(n) for n in bin(x)[2:].zfill(mac_bytes*8)[::-1]]
mac_vec = small_gf128_to_vec(gf128_mac)
s = (np.array(zero_tag) - np.array(mac_vec)) % 2
return vec_to_gf128(h), vec_to_gf128(s)
# Key Commitment Attack
def gmac_blind(k, nonce):
return bytes_to_gf128(ecb_encrypt(k, nonce + b'\x00\x00\x00\x01'))
def encode_lengths(ad_length, ct_length):
return struct.pack('>QQ', ad_length*8, ct_length*8)
def collide(k1, k2, nonce, c):
h1 = gmac_key(k1)
h2 = gmac_key(k2)
p1 = gmac_blind(k1, nonce)
p2 = gmac_blind(k2, nonce)
assert len(c) % 16 == 0
mlen = len(c)//16+1
lens = bytes_to_gf128(encode_lengths(0, len(c) + 16))
acc = gf128_mul(lens, gf128_add(h1, h2))
acc = gf128_add(acc, gf128_add(p1, p2))
for i in range(1, mlen):
hi = gf128_add(gf128_exp(h1, mlen+2-i), gf128_exp(h2, mlen+2-i))
acc = gf128_add(acc, gf128_mul(bytes_to_gf128(c[(i-1)*16:((i-1)+1)*16]), hi))
inv = gf128_inv(gf128_add(gf128_mul(h1, h1), gf128_mul(h2, h2)))
c_append = gf128_mul(acc, inv)
c_ = c + gf128_to_bytes(c_append)
mac = gmac(h1, p1, b'', c_)
return (c_, mac)
def collide_penultimate(k1, k2, nonce, c):
h1 = authentication_key(k1)
h2 = authentication_key(k2)
p1 = gmac_blind(k1, nonce)
p2 = gmac_blind(k2, nonce)
assert len(c) % 16 == 0
mlen = len(c)//16
lens = bytes_to_gf128(encode_lengths(0, len(c)))
acc = gf128_mul(lens, gf128_add(h1, h2))
acc = gf128_add(acc, gf128_add(p1, p2))
n=4
h1Running = gf128_exp(h1, 4)
h2Running = gf128_exp(h2, 4)
for i in reversed(range(0, mlen-2)):
# print(mlen+1-(i))
# i = mlen-2-1-i
hi = gf128_add(h1Running, h2Running)
h1Running = gf128_mul(h1Running, h1)
h2Running = gf128_mul(h2Running, h2)
n+=1
# hi = gf128_add(gf128_exp(h1, mlen+1-i), gf128_exp(h2, mlen+1-i))
#print('block', i, pt[i*16:(i+1)*16], 'exp', mlen+1-i)
acc = gf128_add(acc, gf128_mul(bytes_to_gf128(c[i*16:(i+1)*16]), hi))
# for i in range(0, mlen-2):
# print(i,mlen+1-i)
# hi = gf128_add(gf128_exp(h1, mlen+1-i), gf128_exp(h2, mlen+1-i))
# acc = gf128_add(acc, gf128_mul(bytes_to_gf128(c[i*16:(i+1)*16]), hi))
hi = gf128_add(gf128_exp(h1, 2), gf128_exp(h2, 2))
i = mlen-1
#print('block', i, pt[i*16:(i+1)*16], 'exp', 2)
acc = gf128_add(acc, gf128_mul(bytes_to_gf128(c[i*16:(i+1)*16]), hi))
inv = gf128_inv(gf128_add(gf128_exp(h1, 3), gf128_exp(h2, 3)))
c_append = gf128_mul(acc, inv)
c_ = c[:-32] + gf128_to_bytes(c_append) + c[-16:]
mac = gmac(h1, p1, b'', c_)
return (c_, mac)
def gctr_oneblock(k, pt, nonce):
enckeyval = nonce + b'\x00\x00\x00\x02'
stream = ecb_encrypt(k, enckeyval)
return xor(pt, stream)
def key_search(nonce, init_bytes1, init_bytes2):
seen1 = dict()
seen2 = dict()
while True:
k1 = secrets.token_bytes(16)
k2 = secrets.token_bytes(16)
ct1 = gctr_oneblock(k1, init_bytes1, nonce)
ct2 = gctr_oneblock(k2, init_bytes2, nonce)
seen1[ct1] = k1
seen2[ct2] = k2
if ct1 in seen2:
return k1, seen2[ct1]
if ct2 in seen1:
return seen1[ct2], k2
def att_merge_jpg_bmp(jpg, bmp, aad):
# Precomputed with key_search; works for any files
k1 = unhexlify('8007941455b5af579bb12fff92ef31a3')
k2 = unhexlify('14ef746e8b1792e52b1d22ef124fae97')
nonce = b'JORGELBORGES'
total_len = 6 + (0xffff) + len(jpg) + 0xff # get some extra
jpgstream, _ = gcm_encrypt(k1, nonce, aad, b'\x00'*total_len)
bmpstream, _ = gcm_encrypt(k2, nonce, aad, b'\x00'*total_len)
# 6 bytes
r = xor(jpgstream, b'\xff\xd8\xff\xfe\xff\xff')
# len(bmp) bytes
bmpenc = xor(bmp[6:], bmpstream[6:6+len(bmp)])
r += bmpenc
comlen = 0xffff
# finish comment with padding
r += b'\x00'*(comlen - len(bmpenc))
# jpg
r += xor(jpg[2:-2], jpgstream[6+comlen:])
# comment; include penultimate block to be overwritten; therefore must be at least 3 blocks long
# also serves to block-align to 14 bytes so the final ciphertext will be complete blocks
endcomlen = (28 - (len(r) % 16)) + 16 + 14
tail = b'\xff\xfe' + struct.pack('>H', endcomlen) + b'\x00'*endcomlen + b'\xff\xd9'
tailx = xor(tail, jpgstream[6+comlen+len(jpg)-4:])
r += tailx
assert len(r) % 16 == 0
cfin, macfin = collide_penultimate(k1, k2, nonce, r)
return cfin, macfin
# Demos
def forbidden_attack_demo():
k = b"tlonorbistertius"
nonce = b"jorgelborges"
m1 = b"The universe (which others call the Library)"
aad1 = b"The Anatomy of Melancholy"
m2 = b"From any of the hexagons one can see, interminably"
aad2 = b"Letizia Alvarez de Toledo"
c1, mac1 = gcm_encrypt(k, nonce, aad1, m1)
c2, mac2 = gcm_encrypt(k, nonce, aad2, m2)
# Recover the authentication key and blind from public information
possible_secrets = nonce_reuse_recover_secrets(nonce, aad1, aad2, c1, c2, mac1, mac2)
# Forge the ciphertext
m_forged = b"As was natural, this inordinate hope"
assert len(m_forged) <= len(m1)
c_forged = xor(c1, xor(m1, m_forged))
aad_forged = b"You who read me, are You sure of understanding my language?"
# Check possible candidates for authentication key
succeeded = False
for h, s in possible_secrets:
mac_forged = gmac(h, s, aad_forged, c_forged)
try:
assert gcm_decrypt(k, nonce, aad_forged, c_forged, mac_forged) == m_forged
succeeded = True
print(c_forged.hex(), mac_forged.hex())
except AssertionError:
pass
assert succeeded
def mac_truncation_demo():
# Doesn't work with non-block size multiples.
# Need to modify to consider padding, but we can't mess with the bits in the padding,
# nor can we extend ad/ct unless we also change length block.
k = b'tlonorbistertius'
aad = b''
mac_bytes=1
pt = b'celerypatchworks'*(2**5)
nonce = b'jorgelborges'
ct, mac = gcm_encrypt(k, nonce, aad, pt, mac_bytes=mac_bytes)
def oracle(base, aad, mac, nonce):
decryptor = Cipher(
algorithms.AES(k),
modes.GCM(nonce, mac, min_tag_length=mac_bytes),
).decryptor()
decryptor.authenticate_additional_data(aad)
decryptor.update(base) + decryptor.finalize()
h, s = mac_truncation_recover_secrets(ct, mac, nonce, mac_bytes, aad, oracle, compute_T_once=mac_bytes==1)
assert h == authentication_key(k)
if __name__ == "__main__":
pass
# mac_truncation_demo()
jpg = open('static/axolotl.jpg', 'rb').read()
bmp = open('static/kitten.bmp', 'rb').read()
c, mac = att_merge_jpg_bmp(jpg, bmp, aad=b"")
print(mac.hex())
f = open('c.txt', 'wb')
f.write(c)
f.write(mac)
f.close()
|