summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorcyfraeviolae <cyfraeviolae>2022-08-25 02:15:55 -0400
committercyfraeviolae <cyfraeviolae>2022-08-25 02:15:55 -0400
commit62d6a6167e4121a536b813c883ac73773fef3ad7 (patch)
tree7f975661ef9aec944dc4968e6d671b50ced4eafa
parent3fe6deccdea93f19b7541cdb5c48115150e1837a (diff)
nonce truncation
-rw-r--r--aesgcmanalysis.py275
1 files changed, 242 insertions, 33 deletions
diff --git a/aesgcmanalysis.py b/aesgcmanalysis.py
index 73a9ef8..abdfdb3 100644
--- a/aesgcmanalysis.py
+++ b/aesgcmanalysis.py
@@ -1,4 +1,4 @@
-import random, struct, hmac, itertools
+import random, struct, hmac, itertools, math
from Crypto.Cipher import AES
import numpy as np
@@ -77,9 +77,9 @@ def gf128_mod(a, m=gcm_modulus):
def gf128_egcd(a, b):
"""Compute g, x, y such that g | a, g | b, g = ax + by;
- for any h such that h | a and h | b, gf128_deg(g) >= gf128_deg(h).
+ for any h such that h | a and h | b, gf128_deg(g) >= gf128_deg(h).
>>> assert gf128_egcd(x**2 + 1, x**1 + 1) == (x**1 + 1, 0, 1)
- >>> assert gf128_egcd(x**12 + x**4, x**5 + 1) == (x**1 + 1, x**3 + x**2 + 1, x**10 + x**9 + x**7 + x**5 + x**4 + x**1 + 1)
+ >>> assert gf128_egcd(x**12 + x**4, x**5 + 1) == (x**1 + 1, x**3 + x**2 + 1, x**10 + x**9 + x**7 + x**5 + x**4 + x**1 + 1)
>>> assert gf128_egcd(x**64 + x**2, x**37 + x**12 + 1) == (1, x**35 + x**34 + x**33 + x**31 + x**30 + x**28 + x**27 + x**25 + x**24 + x**21 + x**20 + x**18 + x**17 + x**15 + x**14 + x**12 + x**11 + x**9 + x**7 + x**6 + x**4 + x**3 + x**1 + 1, x**62 + x**61 + x**60 + x**58 + x**57 + x**55 + x**54 + x**52 + x**51 + x**48 + x**47 + x**45 + x**44 + x**42 + x**41 + x**39 + x**38 + x**37 + x**35 + x**34 + x**32 + x**31 + x**29 + x**28 + x**26 + x**25 + x**24 + x**22 + x**21 + x**19 + x**18 + x**16 + x**15 + x**13 + x**12 + x**11 + x**9 + x**8 + x**6 + x**5 + x**3 + x**2 + 1)
"""
orig_a = a
@@ -138,6 +138,97 @@ def gf128_sqrt(x):
"""
return gf128_exp(x, 2**127)
+def gf128_to_vec(x):
+ return [int(n) for n in bin(x)[2:].zfill(128)[::-1]]
+
+def vec_to_gf128(vs):
+ x = 0
+ for i, v in enumerate(vs):
+ if v:
+ x += (1 << i)
+ return x
+
+def reverse_mask(b):
+ # from https://stackoverflow.com/a/2602885
+ b = (b & 0xF0) >> 4 | (b & 0x0F) << 4;
+ b = (b & 0xCC) >> 2 | (b & 0x33) << 2;
+ b = (b & 0xAA) >> 1 | (b & 0x55) << 1;
+ return b;
+
+def bytes_to_gf128(xs, st=None, en=None):
+ if st is None and en is None:
+ st = 0
+ en = 16
+ a, b = struct.unpack('<QQ', bytes(reverse_mask(xs[i]) for i in range(st, en)))
+ return a + (b << 64)
+
+def gf128_to_bytes(n):
+ s = b''
+ while n != 0:
+ c = n & 0xff
+ f = 0
+ for i in range(8):
+ if c & (1 << i):
+ f += (1 << (7-i))
+ s += int.to_bytes(f, 1, 'big')
+ n >>= 8
+ s += b'\x00' * (16 - len(s))
+ assert len(s) == 16
+ return s
+
+def Ms():
+ vs = []
+ for i in range(0, 128):
+ v = gf128_to_vec(gf128_mod(1 << (2*i)))
+ vs.append(v)
+ return np.array(vs).transpose()
+
+def Mc(c):
+ vs = []
+ pr = c
+ for i in range(0, 128):
+ vs.append(gf128_to_vec(pr))
+ pr = gf128_mul(x**1, pr)
+ return np.array(vs).transpose()
+
+# Adapted from Wiki
+def rref_mod_2(M):
+ M = M.copy().astype('int')
+
+ lead = 0
+ rowCount, columnCount = M.shape
+ adj = np.eye(rowCount, rowCount).astype('int')
+
+ for r in range(rowCount):
+ if columnCount <= lead:
+ return M, adj
+ i = r
+ while M[i][lead] == 0:
+ i = i + 1
+ if rowCount == i:
+ i = r
+ lead = lead + 1
+ if columnCount == lead:
+ return M, adj
+ if i != r:
+ M[[i, r]] = M[[r, i]]
+ adj[[i, r]] = adj[[r, i]]
+ for j in range(rowCount):
+ if M[j][lead] == 1 and j != r:
+ M[j] ^= M[r]
+ adj[j] ^= adj[r]
+ lead = lead + 1
+ return M, adj
+
+def kernel(M, f):
+ mt = M.transpose()
+ N, adj = f(mt)
+ basis = []
+ for i, row in enumerate(N):
+ if np.all(np.isclose(row, 0)):
+ basis.append(adj[i])
+ return N, adj, basis
+
## Computation in GF(2^128)[X]/(x^128 + x^7 + x^2 + x^1 + 1)
## Elements are represented as arrays where the ith element is the coefficient for x^i.
@@ -285,7 +376,7 @@ def gf128poly_modexp(a, n, m):
def gf128poly_monic_gcd(a, b):
"""Compute g such that g | a, g | b, gf128poly_lead(g) = 1;
- for any h such that h | a and h | b, gf128poly_deg(g) >= gf128poly_deg(h).
+ for any h such that h | a and h | b, gf128poly_deg(g) >= gf128poly_deg(h).
>>> assert gf128poly_monic_gcd([x**3, x**2, x**4], [x**3, x**2, x**4]) == [x**127 + x**6 + x**1 + 1, x**127 + x**126 + x**6 + x**5 + x**1, 1]
>>> assert gf128poly_monic_gcd([1], [1]) == [1]
>>> assert gf128poly_monic_gcd([x**5 + x**2], []) == [x**5 + x**2]
@@ -422,34 +513,6 @@ def gf128poly_factorize(f, degree=None):
## AES-GCM
-def reverse_mask(b):
- # from https://stackoverflow.com/a/2602885
- b = (b & 0xF0) >> 4 | (b & 0x0F) << 4;
- b = (b & 0xCC) >> 2 | (b & 0x33) << 2;
- b = (b & 0xAA) >> 1 | (b & 0x55) << 1;
- return b;
-
-def bytes_to_gf128(xs, st=None, en=None):
- if st is None and en is None:
- st = 0
- en = 16
- a, b = struct.unpack('<QQ', bytes(reverse_mask(xs[i]) for i in range(st, en)))
- return a + (b << 64)
-
-def gf128_to_bytes(n):
- s = b''
- while n != 0:
- c = n & 0xff
- f = 0
- for i in range(8):
- if c & (1 << i):
- f += (1 << (7-i))
- s += int.to_bytes(f, 1, 'big')
- n >>= 8
- s += b'\x00' * (16 - len(s))
- assert len(s) == 16
- return s
-
def pad(xs):
return xs + b'\x00' * ((16 - len(xs)) % 16)
@@ -534,7 +597,134 @@ def nonce_reuse_recover_secrets(nonce, aad1, aad2, c1, c2, mac1, mac2):
secrets.append((h, s))
return secrets
-def demo():
+## Nonce Truncation Attack
+
+def gen_blocks(n, js):
+ blocks = b'\x00'*16*n
+ for j in js:
+ whichbyte = j // 8
+ whichbit = j % 8
+ newbyte = blocks[whichbyte] ^ (1 << (7-whichbit))
+ blocks = blocks[:whichbyte] + bytes([newbyte]) + blocks[whichbyte+1:]
+ return blocks
+
+squarer = np.array(Ms())
+matsqlookup = np.load(open('squares.np', 'rb'))
+adlookup = np.load(open('ad.np', 'rb'))
+
+def gen_ad(blocks):
+ matret = np.zeros((128, 128))
+ for i in range(len(blocks)//16):
+ block = blocks[(i*16):(i+1)*16]
+ if block == b'\x00'*16:
+ continue
+ j = i + 1 # first is taken up by length block
+ mat = None
+ d = bytes_to_gf128(block)
+ matd = Mc(d)
+ if len(matsqlookup) > j:
+ matsq = matsqlookup[j]
+ else:
+ matsq = np.linalg.matrix_power(squarer, j) % 2
+ mat = matd @ matsq
+ matret += mat
+ return matret % 2 # Because the elements of Ad are in GF2 we can mod 2
+
+def gen_t(n, macbytes, X=None, minrows=8):
+ T = []
+ for j in range(n*128):
+ if j < len(adlookup):
+ Ad = adlookup[j]
+ else:
+ blocks = gen_blocks(n, [j])
+ Ad = gen_ad(blocks)
+
+ if X is not None:
+ rows = min((n*128)//(X.shape[1]) - 1, macbytes*8-minrows)
+ else:
+ rows = min((n*128)//(Ad.shape[1]) - 1, macbytes*8-minrows)
+
+ if X is not None:
+ Ad = (Ad[:rows] @ X) % 2
+ z = np.concatenate(Ad[:rows])
+ T.append(z)
+ return (np.array(T)).transpose().astype('int')
+
+def gen_flips(b):
+ return np.nonzero(b)[0]
+
+def compute_n(ct):
+ num_blocks = len(ct)//16
+ ns = [1] # 1-indexed
+ while (ns[-1]*2)<=(num_blocks):
+ ns.append(2*ns[-1])
+ ns = [n-1 for n in ns] # 0-indexed into c
+ n = len(ns) - 1
+ return n
+
+def chunk(xs, n=16):
+ return [xs[i*n:(i+1)*n] for i in range(len(xs)//16)]
+
+def find_b(n, basis, ct, mac, nonce, aad, oracle):
+ base = bytearray(ct)
+ idx = 0
+ while True:
+ choice = random.sample(basis, random.randint(1, 12))
+ b = sum(choice) % 2
+ flips = gen_flips(b)
+ blocks = gen_blocks(n, flips)
+ for i, block in enumerate(chunk(blocks)):
+ j = (len(base)//16)-(2**(i+1)-1)
+ base[j*16:(j+1)*16] = xor(base[j*16:(j+1)*16], block)
+ try:
+ oracle(base[len(aad):], base[:len(aad)], mac, nonce)
+ return b
+ except ValueError as e:
+ assert str(e) == 'MAC check failed'
+ for i, block in enumerate(chunk(blocks)):
+ j = (len(base)//16)-(2**(i+1)-1)
+ base[j*16:(j+1)*16] = xor(base[j*16:(j+1)*16], block)
+ idx += 1
+
+def compute_auth_key(ct, mac, nonce, mac_bytes, aad, oracle):
+ ct = aad + ct
+ n = compute_n(ct)
+ assert n > (mac_bytes*8//2)
+ assert len(ct) % 16 == 0
+ assert len(aad) % 16 == 0
+ X = None
+ K = None
+ basisKerK = None
+ while K is None or (basisKerK is None or len(basisKerK) > 1):
+ T = gen_t(n, mac_bytes, X, minrows=7)
+ _, _, basisKerT = kernel(T, rref_mod_2)
+ assert len(basisKerT[0]) == n*128
+
+ b = find_b(n, basisKerT, ct, mac, nonce, aad, oracle)
+ flips = gen_flips(b)
+ blocks = gen_blocks(n, flips)
+ Ad = gen_ad(blocks)
+
+ if X is not None:
+ AdRelevant = ((Ad @ X) % 2)[:mac_bytes*8]
+ else:
+ AdRelevant = Ad[:mac_bytes*8]
+ incrK = Ad[:mac_bytes*8][np.any(AdRelevant, axis=1)]
+ if K is None:
+ K = incrK
+ else:
+ K = np.concatenate([K, incrK])
+ _, _, basisKerK = kernel(K, rref_mod_2)
+ X = np.array(basisKerK).transpose()
+ print(len(basisKerK))
+ _, _, kerK = kernel(K, rref_mod_2)
+ assert len(kerK) == 1
+ h = kerK[0]
+ return gf128_to_bytes(vec_to_gf128(h))
+
+# Demos
+
+def forbidden_attack_demo():
k = b"tlonorbistertius"
nonce = b"jorgelborges"
m1 = b"The universe (which others call the Library)"
@@ -565,3 +755,22 @@ def demo():
except AssertionError:
pass
assert succeeded
+
+def nonce_truncation_demo():
+ k = b'YELLOW_SUBMARINE'
+ aad = b'YELLOW_SUBMAFINERELLOWPUBMARINF_'
+ MACBYTES=1
+ pt = b'CELERYPATCHWORKS'*(2**9)
+ nonce = b'JORGELBORGES'
+ ct, mac = gcm_encrypt(k, nonce, aad, pt, mac_bytes=MACBYTES)
+ def oracle(base, aad, mac, nonce):
+ cipher = AES.new(k, mode=AES.MODE_GCM, nonce=nonce, mac_len=MACBYTES)
+ cipher.update(aad)
+ pt = cipher.decrypt_and_verify(base, mac)
+ h = compute_auth_key(ct, mac, nonce, MACBYTES, aad, oracle)
+ assert h == gf128_to_bytes(authentication_key(k))
+nonce_truncation_demo()
+
+# Try with different lengths
+# Make it so we chosoe to generate gen_t on the fly if needed
+# PRofiling