{-# LANGUAGE GADTs #-} {-# LANGUAGE LambdaCase #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE TupleSections #-} module Lib where import Data.Char (chr, ord) import qualified Data.List as L import qualified Data.Map as M import Data.Maybe (fromJust) import qualified Data.Set as S import Debug.Trace () import Parser import qualified Text.Parsec as Parsec mget :: (Ord a) => a -> M.Map a b -> b mget a m = fromJust $ M.lookup a m automatizem :: M.Map Addend Int -> Matrix -> DFA [Int] Int automatizem dir (MEq as bs) = eq (fromIntegral $ length dir) (map (`mget` dir) as) (map (`mget` dir) bs) automatizem dir (MLe a b) = le (mget a dir) (mget b dir) automatizem dir (MLt a b) = lt (mget a dir) (mget b dir) automatizem dir (MAnd x y) = conj (automatizem dir x) (automatizem dir y) automatizem dir (MOr x y) = disj (automatizem dir x) (automatizem dir y) automatizem dir (MNot x) = compl (automatizem dir x) automatize :: M.Map Addend Int -> QNMFormula -> NFA [Int] Int automatize dir (QNMFormula [] m) = minimize (fromIntegral $ length dir) $ nondeterminize $ automatizem dir m automatize dir (QNMFormula (Neg : quas) m) = let nfa = automatize dir (QNMFormula quas m) in minimize (fromIntegral (length dir)) (ncompl nfa) automatize dir (QNMFormula (Qua (Exists, v) : quas) m) = let nfa = automatize dir (QNMFormula quas m) in case M.lookup (Var v) dir of Nothing -> nfa (Just i) -> minimize (fromIntegral $ length dir) $ existentialize i nfa assign :: S.Set Addend -> M.Map Addend Int assign xs = M.fromList (zip (S.toList xs) [0 ..]) collect :: Matrix -> S.Set Addend collect (MEq as bs) = S.fromList (as ++ bs) collect (MLe a b) = S.fromList [a, b] collect (MLt a b) = S.fromList [a, b] collect (MAnd x y) = S.union (collect x) (collect y) collect (MOr x y) = S.union (collect x) (collect y) collect (MNot x) = collect x literals :: M.Map Addend Int -> [[Int]] literals m = let addends = L.sortOn snd (M.toList m) reversedLiterals = map (\(a, i) -> addendReverseBinary a) addends max = L.maximum (map length reversedLiterals) paddedReversed = map (\x -> x ++ replicate (max - length x) 0) reversedLiterals padded = map reverse paddedReversed in L.transpose padded addendReverseBinary :: Addend -> [Int] addendReverseBinary (Var x) = [] addendReverseBinary (Con n) = reverseBinary n reverseBinary :: Integer -> [Int] reverseBinary 0 = [] reverseBinary n = fromIntegral (mod n 2) : reverseBinary (div n 2) eval :: QNMFormula -> Bool eval f@(QNMFormula q m) = let dir = (assign $ collect m) nfa = automatize dir f input = literals (assign $ collect m) in runNFA nfa input data State a = Single a | Double (State a, State a) | Multi [State a] deriving (Eq, Ord, Show) data DFA c a = DFA [State a] (State a) [State a] (State a -> c -> State a) data NFA c a = NFA [State a] [State a] [State a] (State a -> c -> [State a]) runDFA :: (Ord a) => DFA c a -> [c] -> Bool runDFA (DFA _ start accepts f) cs = foldl f start cs `elem` accepts runNFA :: (Ord a) => NFA c a -> [c] -> Bool runNFA (NFA _ starts accepts f) cs = foldl (\xs c -> L.nub $ concatMap (`f` c) xs) starts cs `L.intersect` accepts /= [] reversal :: (Ord a) => NFA c a -> NFA c a reversal (NFA states starts accepts f) = NFA states accepts starts f' where f' s c = filter (\state -> s `elem` f state c) states eq :: Integer -> [Int] -> [Int] -> DFA [Int] Int eq n is js = determinize $ minimize n $ reversal $ nondeterminize dfa where states = Single <$> [- (length js - 1) .. length is - 1 + 1] start = Single 0 accepts = [Single 0] rejector = last states f :: State Int -> [Int] -> State Int f carrystate@(Single carry) c = if carrystate == rejector then rejector else let si = sum (map (c !!) is) sj = sum (map (c !!) js) parityok = mod (carry + si) 2 == mod sj 2 newcarry = div (carry + si - sj) 2 in if parityok then Single newcarry else rejector dfa = DFA states start accepts f le :: Int -> Int -> DFA [Int] Int le = less LessEqual lt :: Int -> Int -> DFA [Int] Int lt = less LessThan data LessType = LessEqual | LessThan deriving (Eq, Ord, Show) less :: LessType -> Int -> Int -> DFA [Int] Int less lt i j = DFA [Single 0, Single 1, Single 2] (Single 0) accepts f where accepts = if lt == LessEqual then [Single 0, Single 2] else [Single 2] f s c = case (s, (c !! i, c !! j)) of (Single 0, (1, 1)) -> Single 0 (Single 0, (0, 0)) -> Single 0 (Single 0, (1, 0)) -> Single 1 (Single 0, _) -> Single 2 (Single 1, _) -> Single 1 (_, _) -> Single 2 prod :: [a] -> [b] -> [(a, b)] prod xs [] = [] prod [] ys = [] prod (x : xs) ys = fmap (x,) ys ++ prod xs ys data JunctionType = Conj | Disj deriving (Eq, Ord, Show) junction :: (Ord a) => JunctionType -> DFA c a -> DFA c a -> DFA c a junction jt (DFA states1 start1 accepts1 f1) (DFA states2 start2 accepts2 f2) = DFA states' start' accepts' f' where newStates = prod states1 states2 states' = Double <$> newStates start' = Double (start1, start2) accepts' = if jt == Conj then Double <$> prod accepts1 accepts2 else Double <$> filter (\(s, t) -> s `elem` accepts1 || t `elem` accepts2) newStates f' (Double (s, t)) c = Double (f1 s c, f2 t c) conj :: (Ord a) => DFA c a -> DFA c a -> DFA c a conj = junction Conj disj :: (Ord a) => DFA c a -> DFA c a -> DFA c a disj = junction Disj compl :: (Ord a) => DFA c a -> DFA c a compl (DFA states start accepts f) = DFA states start (states L.\\ accepts) f nondeterminize :: (Ord a) => DFA c a -> NFA c a nondeterminize (DFA states start accepts f) = NFA states [start] accepts f' where f' s c = [f s c] change :: [a] -> Int -> a -> [a] change xs idx b = take idx xs ++ [b] ++ drop (idx + 1) xs closure :: (Ord a) => NFA c a -> [c] -> [State a] -> [State a] closure nfa@(NFA states starts accepts f) cs initstates = let new = concatMap (\state -> concatMap (f state) cs) initstates in if L.nub new L.\\ L.nub initstates /= [] then closure nfa cs (L.nub $ new ++ initstates) else L.nub initstates existentialize :: (Ord a) => Int -> NFA [Int] a -> NFA [Int] a existentialize idx nfa@(NFA states starts accepts f) = NFA states starts' accepts f' where zeroer = replicate 50 0 oneer = change zeroer idx 1 starts' = closure nfa [zeroer, oneer] starts f' s c = f s (change c idx 0) ++ f s (change c idx 1) powerset :: [a] -> [[a]] powerset [] = [[]] powerset (x : xs) = let rest = powerset xs in map (x :) rest ++ rest determinize :: (Ord a) => NFA c a -> DFA c a determinize (NFA states start accepts f) = DFA states' start' accepts' f' where newStates = map L.sort $ powerset states states' = Multi <$> newStates start' = Multi $ L.sort start accepts' = Multi <$> filter (\state' -> state' `L.intersect` accepts /= []) newStates f' (Multi s) c = Multi $ L.nub $ L.sort $ concatMap (`f` c) s ncompl :: (Ord a) => NFA c a -> NFA c a ncompl = nondeterminize . compl . determinize chars :: Integer -> [[Int]] chars 0 = [[]] chars n = let r = chars (n -1) in map (1 :) r ++ map (0 :) r minimize :: (Ord a) => Integer -> NFA [Int] a -> NFA [Int] a minimize n nfa@(NFA _ starts accepts f) = NFA states' starts' accepts' f where states' = closure nfa (chars n) starts starts' = starts `L.intersect` states' accepts' = accepts `L.intersect` states'