From d4e149445bda4a73dc3bb987e6ba296c7d6fe84e Mon Sep 17 00:00:00 2001 From: cyfraeviolae Date: Wed, 24 Aug 2022 00:38:04 -0400 Subject: work --- nonce-reuse.html | 229 ------------------------------------------------------- 1 file changed, 229 deletions(-) delete mode 100644 nonce-reuse.html (limited to 'nonce-reuse.html') diff --git a/nonce-reuse.html b/nonce-reuse.html deleted file mode 100644 index 21c794d..0000000 --- a/nonce-reuse.html +++ /dev/null @@ -1,229 +0,0 @@ - - - - Forbidden Salamanders - - - - - - - -
-
- - -
-

- Nonce reuse. Due to rising entropy - prices, Roseacrucis has started to reuse nonces. You must perform the - Forbidden Attack in order to recover the authentication key and - forge arbitrary ciphertext. -

-
-
- - Attack outline. - -

- Recall that the AES-GCM ciphertext is computed as the XOR of the - keystream and the message. One can modify the bits of the - ciphertext arbitrarily to effect the same change in the decrypted - plaintext. -

-

- Where certain bits of the plaintext are already known, the attacker - can fully determine the same bits of the forged plaintext. If - nonces are reused, the keystream will be identical, allowing us to - recover plaintext via - - crib dragging, which makes this attack particularly effective: - \[ - c' = c \oplus m \oplus m'. - \] -

-

- However, we still need to compute a new MAC over the forged ciphertext. - Simplifying for a ciphertext \(c\) of two blocks, the GMAC MAC is computed as - \[ - mac = s + (len)h + c_1h^2 + c_0h^3, - \] - where \(s\) is a constant depending on the AES-GCM key and the nonce, and \(h\) - is the authentication key depending only on the AES-GCM key. -

-

- If we intercept a second ciphertext \(c'\) encrypted under the same key and nonce, - we can compute - \[ - mac + mac' = (s + s') + (len + len')h + (c_1 + c'_1)h^2 + (c_0+c'_0)h^3, - \] - Since \(s = s'\) and \(x+x=0\) in \(\mathbb{F}_{2^{128}}\), we are - left with the polynomial equation - \[ - 0 = (mac + mac') + (len + len')h + (c_1 + c'_1)h^2 + (c_0+c'_0)h^3 - \] - where all variables are known other than \(h\). Thus, recovering \(h\) - is a matter of finding the roots by factoring the - polynomial. -

-

- We plug \(h\) back into the first equation to recover \(s\), - and finally, we can forge the MAC for arbitary ciphertext under the - same nonce. Note that there may be multiple possible monomial roots; - in this case, one can check each possibility online. -

-
-
-
-
- - -
- -
- - -
- -
- - -
- -
- - -
- -
- - -
- -
- -
-
-
- - -
-
- - -
-
- - -
-
-
- - Show me the code. - -
-from aesgcmanalysis import xor, gcm_encrypt, gcm_decrypt, nonce_reuse_recover_secrets
-
-k = b"tlonorbistertius"
-nonce = b"jorgelborges"
-m1 = b"The universe (which others call the Library)"
-aad1 = b"The Anatomy of Melancholy"
-m2 = b"From any of the hexagons one can see, interminably"
-aad2 = b"Letizia Alvarez de Toledo"
-
-c1, mac1 = gcm_encrypt(k, nonce, aad1, m1)
-c2, mac2 = gcm_encrypt(k, nonce, aad2, m2)
-
-# Recover the authentication key and blind from public information
-possible_secrets = nonce_reuse_recover_secrets(nonce, aad1, aad2, c1, c2, mac1, mac2)
-
-# Forge the ciphertext
-m_forged = b"As was natural, this inordinate hope"
-assert len(m_forged) <= len(m1)
-c_forged = xor(c1, xor(m1, m_forged))
-aad_forged = b"You who read me, are You sure of understanding my language?"
-
-# Check possible candidates for authentication key
-succeeded = False
-for h, s in possible_secrets:
-    mac_forged = gmac(h, s, aad_forged, c_forged)
-    try:
-        assert gcm_decrypt(k, nonce, aad_forged, c_forged, mac_forged) == m_forged
-        succeeded = True
-        print(c_forged.hex(), mac_forged.hex())
-    except AssertionError:
-        pass
-assert succeeded
-
- - Show me the math. - -

- A description of the construction of GMAC can be found at the mission homepage. -

-

- Once the polynomial difference is computed, one can use SageMath - to compute the factors: -

-
-K = GF(2**128, name='x', modulus=x^128+x^7+x^2+x+1)
-x = K.gen()
-S = PolynomialRing(K, 'y')
-y = S.gen()
-p = (x^127 + x^125 + x^121 + x^118 + x^117 + x^116 + x^113 + x^111 + x^108 + x^105 + x^102 + x^99 + x^97 + x^95 + x^89 + x^87 +
- x^85 + x^84 + x^81 + x^78 + x^73 + x^71 + x^69 + x^67 + x^65 + x^63 + x^62 + x^59 + x^57 + x^55 + x^54 + x^53 + x^52 + x^51 +
-x^49 + x^47 + x^46 + x^45 + x^43 + x^41 + x^39 + x^38 + x^37 + x^36 + x^33 + x^29 + x^28 + x^25 + x^21 + x^20 + x^17 + x^15 + x
-^13 + x^9 + x^7 + x^4 + x^3 + x)*y^5 + (x^127 + x^125 + x^121 + x^118 + x^117 + x^116 + x^113 + x^111 + x^108 + x^105 + x^102 +
- x^99 + x^97 + x^95 + x^89 + x^87 + x^85 + x^84 + x^81 + x^78 + x^73 + x^71 + x^69 + x^67 + x^65 + x^63 + x^62 + x^59 + x^57 +
-x^55 + x^54 + x^53 + x^52 + x^51 + x^49 + x^47 + x^46 + x^45 + x^43 + x^41 + x^39 + x^38 + x^37 + x^36 + x^33 + x^29 + x^28 + x
-^25 + x^21 + x^20 + x^17 + x^15 + x^13 + x^9 + x^7 + x^4 + x^3 + x)*y^4 + (x^127 + x^125 + x^124 + x^123 + x^122 + x^120 + x^11
-9 + x^118 + x^115 + x^112 + x^111 + x^110 + x^109 + x^108 + x^106 + x^101 + x^100 + x^99 + x^98 + x^96 + x^93 + x^88 + x^87 + x
-^84 + x^83 + x^82 + x^78 + x^77 + x^74 + x^71 + x^70 + x^69 + x^68 + x^65 + x^62 + x^61 + x^60 + x^57 + x^55 + x^53 + x^50 + x^
-49 + x^47 + x^46 + x^44 + x^43 + x^41 + x^40 + x^39 + x^37 + x^36 + x^35 + x^34 + x^33 + x^31 + x^30 + x^25 + x^19 + x^16 + x^1
-4 + x^13 + x^12 + x^11 + x^10 + x^5 + x^2 + x + 1)*y^3 + (x^124 + x^123 + x^121 + x^120 + x^119 + x^118 + x^117 + x^116 + x^115
- + x^113 + x^112 + x^110 + x^107 + x^106 + x^104 + x^103 + x^101 + x^99 + x^98 + x^95 + x^94 + x^83 + x^82 + x^81 + x^80 + x^79
- + x^77 + x^76 + x^75 + x^73 + x^72 + x^67 + x^64 + x^63 + x^62 + x^61 + x^59 + x^57 + x^56 + x^54 + x^53 + x^51 + x^49 + x^48
-+ x^46 + x^45 + x^44 + x^42 + x^36 + x^35 + x^34 + x^33 + x^31 + x^28 + x^22 + x^21 + x^17 + x^12 + x^11 + x^10 + x^8 + x^5 + x
-^4 + 1)*y^2 + (x^120 + x^119 + x^56 + x^55)*y + (x^127 + x^126 + x^125 + x^124 + x^123 + x^118 + x^117 + x^116 + x^115 + x^114
-+ x^113 + x^105 + x^103 + x^98 + x^96 + x^94 + x^91 + x^90 + x^89 + x^87 + x^86 + x^85 + x^83 + x^81 + x^80 + x^78 + x^77 + x^7
-0 + x^66 + x^63 + x^62 + x^59 + x^58 + x^54 + x^53 + x^52 + x^50 + x^47 + x^45 + x^44 + x^42 + x^40 + x^39 + x^37 + x^35 + x^34
- + x^30 + x^29 + x^27 + x^26 + x^25 + x^23 + x^18 + x^16 + x^14 + x^13 + x^12 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3
-+ 1)
-for factor, _ in p.factor():
-    if factor.degree() == 1:
-        print('Authentication key:', factor - y)
-

- However, the library powering this demonstration implements polynomial factoring over finite fields, which is an edifying exercise. -

-

- We present advice for those who wish to implement polynomial factorization as well: -

-
    -
  • The gcd of two polynomials is unique only up to multiplication by a non-zero constant because “greater” is defined for polynomials in terms of degree. When used in algorithms, gcd refers to the monic gcd, which is unique.
  • -
  • The inverse Frobenius automorphism (i.e., square root) in \(\mathbb{F}_{2^{128}}\) is given by \(\sqrt{x} = x^{2^{127}})\).
  • -
-
- - - - -- cgit v1.2.3